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1  | INTRODUC TION

The relationship between form and function has long been recog‐
nized (Cuvier, 1817; Lauder, 1981; Russell, 1916), and, given the 

phenotypic similarities generated by convergence, the incorporation 
of phylogenetic comparative methods has become almost imperative 
on analyses of evolutionary shape changes (Bookstein et al., 1985; 
Felsenstein, 1985; Harvey & Pagel, 1991; Losos, 2011; Monteiro, 
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Abstract
Crocodylomorpha, which includes living crocodylians and their extinct relatives, has 
a rich fossil record, extending back for more than 200 million years. Unlike modern 
semi‐aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, 
ranging from marine to fully terrestrial forms. This ecological diversity was mirrored 
by a remarkable morphological disparity, particularly in terms of cranial morphology, 
which seems to be closely associated with ecological roles in the group. Here, I use 
geometric morphometrics to comprehensively investigate cranial shape variation and 
disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial 
shape and ecology (i.e. terrestrial, aquatic, and semi‐aquatic lifestyles), as well as pos‐
sible allometric shape changes. I also characterize patterns of cranial shape evolution 
and identify regime shifts. I found a strong link between shape and size, and a signifi‐
cant influence of ecology on the observed shape variation. Terrestrial taxa, particu‐
larly notosuchians, have significantly higher disparity, and shifts to more longirostrine 
regimes are associated with large‐bodied aquatic or semi‐aquatic species. This dem‐
onstrates an intricate relationship between cranial shape, body size and lifestyle in 
crocodylomorph evolutionary history. Additionally, disparity‐through‐time analyses 
were highly sensitive to different phylogenetic hypotheses, suggesting the descrip‐
tion of overall patterns among distinct trees. For crocodylomorphs, most results agree 
in an early peak during the Early Jurassic and another in the middle of the Cretaceous, 
followed by nearly continuous decline until today. Since only crown‐group members 
survived through the Cenozoic, this decrease in disparity was likely the result of habi‐
tat loss, which narrowed down the range of crocodylomorph lifestyles.
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2013; Rohlf, 2001, 2002). Taking this into account, several studies 
have examined the association between organisms’ shape and ecol‐
ogy in a phylogenetic context (e.g. Bhullar et al., 2012; Sidlauskas, 
2008; Watanabe et al., 2019). Similarly, another widely studied and 
documented evolutionary phenomenon is the link between size 
and shape, which generates allometric shape changes (Gould, 1966; 
Klingenberg, 2016). Accordingly, with the current expansion of the 
use of geometric morphometric techniques for analysing shape vari‐
ation, studies that investigate the relationship between shape and 
either size or ecology (or both), while also taking a phylogenetic ap‐
proach, have become increasingly common (Adams, Rohlf, & Slice, 
2004; Zelditch, Swiderski, & Sheets, 2012).

In this context, data collected from fossil organisms can yield 
essential information for a better comprehension of large‐scale evo‐
lutionary shape changes. Among tetrapods, Crocodylomorpha rep‐
resent a good system for studying large‐scale phenotypic evolution, 
given the group's long and rich fossil record (Bronzati, Montefeltro, 
& Langer, 2015; Mannion et al., 2015), as well as extensive recent 
effort to resolve major phylogenetic uncertainties (e.g. Andrade, 
Edmonds, Benton, & Schouten, 2011; Brochu, 2011, 2012; Bronzati, 
Montefeltro, & Langer, 2012; Clark, 2011; Herrera, Gasparini, & 
Fernández, 2015; Jouve, Iarochene, Bouya, & Amaghzaz, 2006; 
Larsson & Sues, 2007; Montefeltro, Larsson, França, & Langer, 2013; 
Pol et  al., 2014; Turner, 2015; Wilberg, 2015; Young & Andrade, 
2009; Young, Brusatte, Ruta, & Andrade, 2010). Furthermore, 
previous studies have investigated the relationship between form 
and function in crocodylomorphs, particularly focusing on the link 
between ecological roles and skull shape (Brochu, 2001; Busbey, 
1995; Taylor, 1987). Historically, the crocodylomorph skull has re‐
ceived substantial attention in anatomical studies (Iordansky, 1973), 
which might explain the preference for this part of the skeleton as 
the source of morphological information in most works quantita‐
tively investigating phenotypic evolution in the group (even though 
some important exceptions exist; e.g. Bonnan, Farlow, & Masters, 
2008; Chamero, Buscalioni, & Marugán‐Lobón, 2013; Chamero, 
Buscalioni, Marugán‐Lobón, & Sarris, 2014; Stubbs, Pierce, Rayfield, 
& Anderson, 2013; Walmsley et al., 2013; Toljagić & Butler, 2013; 
Gold, Brochu, & Norell, 2014).

Previous works that use geometric morphometrics for studying 
crocodylomorph cranial shape have mostly focused on specific sub‐
groups, especially crocodylians (Bona, Ezcurra, Barrios, & Fernandez 
Blanco, 2018; Clarac et al., 2016; Fernandez Blanco, Cassini, & Bona, 
2018; Foth, Fernandez Blanco, Bona, & Scheyer, 2017; Iijima, 2017; 
McCurry, Evans, et al., 2017; Monteiro, Cavalcanti, & Sommer, 1997; 
Morris, Vliet, Abzhanov, & Pierce, 2019; Okamoto, Langerhans, 
Rashid, & Amarasekare, 2015; Pearcy & Wijtten, 2011; Pierce, 
Angielczyk, & Rayfield, 2008; Piras, Teresi, Buscalioni, & Cubo, 2009; 
Piras et al., 2010, 2014; Sadleir & Makovicky, 2008; Salas‐Gismondi, 
Moreno‐Bernal, Scheyer, Sánchez‐Villagra, & Jaramillo, 2018; Salas‐
Gismondi et al., 2016; Watanabe & Slice, 2014), but also thalatto‐
suchians (Pierce, Angielczyk, & Rayfield, 2009; Young et al., 2010) 
and notosuchians (Godoy et al., 2018). One important exception is 
the recent work of Wilberg (2017), which assessed cranial shape 

variation across Crocodyliformes (which is only slightly less inclu‐
sive than Crocodylomorpha; Irmis, Nesbitt, & Sues, 2013), sampling 
a large number of species. Nevertheless, the sample size of Wilberg 
(2017) could still be significantly increased, potentially permitting 
the assessment of morphospace occupation and morphological dis‐
parity among other crocodylomorph subgroups (i.e. not only making 
a distinction between species within Crocodylia and those outside 
the crown‐group). Furthermore, Wilberg (2017) analysed patterns 
of cranial shape disparity through time within Crocodylomorpha, 
but the impact of alternative time sub‐sampling methods on dis‐
parity‐through‐time analyses (as recently suggested by Guillerme 
& Cooper, 2018) was not explored, as well as that of distinct phy‐
logenetic hypotheses. Finally, the potential influence of body size 
and ecological transitions on crocodylomorph cranial shape can also 
be quantitatively assessed with phylogenetic comparative methods 
(Klingenberg & Marugán‐Lobón, 2013; Monteiro, 2013; Zelditch 
et al., 2012). Even though the hypothesis of a link between cranial 
shape and ecology (mainly feeding strategies) has been previously 
examined for some groups (e.g. Busbey, 1995; McHenry, Clausen, 
Daniel, Meers, & Pendharkar, 2006; Young et al., 2010), a wider in‐
vestigation, including taxa of all crocodylomorph groups, remains to 
be tested, as well as the role of size in this relationship.

Here, I use geometric morphometric techniques to comprehen‐
sively analyse crocodylomorph cranial shape, by combining a previ‐
ously available landmark dataset (from Wilberg (2017)) with newly 
digitized specimens. I quantify cranial shape variation and estimate 
disparity of distinct crocodylomorph subgroups, and also estimate 
disparity through time. This allowed me to compare my results with 
those of previous studies, but also to investigate the impact of a va‐
riety of alternative methods in disparity‐through‐time estimation. 
I further investigate the association between the observed shape 
variation and two factors: body size and ecology (=lifestyles). For 
that, I used disparity estimation and morphospace occupation, but 
also statistical and phylogenetic comparative methods. I also in‐
ferred shifts in cranial shape evolutionary regimes, using Bayesian 
and maximum‐likelihood approaches. By doing this, I was able to 
characterize the patterns of crocodylomorph cranial shape evolution 
and to test its hypothesized relationship with ecological transitions 
and size.

2  | MATERIAL AND METHODS

2.1 | Sampling and data collection

The goal of this study was to examine overall cranial shape changes 
across as many crocodylomorph species as possible. Most crocody‐
lomorph crania are taphonomically deformed, usually by dorsoven‐
tral compression, which prevents a comprehensive study from using 
three‐dimensional (3D) data. Thus, I initially used the data published 
by Wilberg (2017), as this is the most phylogenetically comprehen‐
sive 2D landmark dataset to date (i.e. 131 crocodylomorph speci‐
mens, most of which were identified to species level). This dataset 
used only dorsal views of skulls, as this view is less susceptible to 
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compression and taphonomic distortion across different crocodylo‐
morph groups. For capturing overall cranial shape, Wilberg (2017) 
digitized four (4) landmarks, each at a key homologous point of croc‐
odylomorph skulls, as well as a semilandmark curve (with 60 sem‐
ilandmarks) to represent the outline of skulls. It is worth mentioning 
that the dataset made available by Wilberg (2017) was slightly modi‐
fied, as in its original version the semilandmark curves were artifi‐
cially divided into two parts (one rostral to and another caudal to 
the level rostralmost point of the orbit; see Appendix S1 for descrip‐
tion and position of the landmarks and further information on data 
collection).

To expand this dataset, I digitized landmarks for additional 86 
new specimens, representing an increase of nearly 65% over the 
dataset of Wilberg (2017). Five specimens included in the original 
dataset were posteriorly removed, and the taxonomy of all speci‐
mens was updated following more recent literature (see Appendix S1 
for further details). The final expanded dataset includes 212 speci‐
mens, representing 209 species (see Appendix S2 for the complete 
list of specimens sampled). For landmark data collection, I used tp‐
sUTIL version 1.76 (Rohlf, 2015) to compile the images into a single 
.tps file, then digitizing the landmarks and semilandmarks in tpsDIG2 
version 2.30 (Rohlf, 2015).

2.2 | Phylogenetic framework

Within the context of phylogenetic comparative methods, it is fun‐
damental to set a phylogenetic framework, upon which downstream 
analyses can be performed. For this study, I sought a comprehensive 
phylogenetic hypothesis (or hypotheses), which enabled the inves‐
tigation of overall evolutionary patterns within Crocodylomorpha. 
Thus, I used a modified version of the crocodylomorph informal su‐
pertree from Godoy, Benson, Bronzati, and Butler (2019), which is 
the most recent and comprehensive version of the supertree pre‐
sented by Bronzati et al. (2012). For the present study, I also added 
20 species for which I had landmark data, but were not previously 
in the supertree (see Appendix S1 for details). The final version of 
the supertree includes 325 species (316 crocodylomorphs and nine 
non‐crocodylomorph species, as outgroups).

Instead of just a single phylogenetic framework (i.e. supertree), 
I used three alternative phylogenetic scenarios for dealing with 
major phylogenetic uncertainties among crocodylomorphs. These 
major uncertainties mostly concern the relative positions of thalat‐
tosuchians (recovered either as neosuchians or as the sister group 
of Crocodyliformes; Clark, 1994; Pol & Gasparini, 2009; Wilberg, 
2015) and that of gavialids in relation to tomistomines and ‘tho‐
racosaurs’ (Gatesy, Amato, Norell, DeSalle, & Hayashi, 2003; Lee 
& Yates, 2018). To accommodate these, I created three versions of 
the supertree, in which the only differences among topologies were 
the relative positions of Thalattosuchia and the distinct interrela‐
tionships within Crocodylia (regarding the relative of gavialids; see 
Appendix S1 for details). These different versions of the supertree 
formed the base of the three phylogenetic scenarios used in down‐
stream analyses.

Another important step for macroevolutionary analyses is 
to time‐scale the phylogenetic trees, in order to investigate and 
characterize deep‐time patterns. Therefore, each of these three 
supertrees/topologies was then time‐calibrated using the fossil‐
ized birth–death (FBD) model (Didier, Fau, & Laurin, 2017; Didier 
& Laurin, 2018; Heath, Huelsenbeck, & Stadler, 2014; Ronquist, 
Klopfstein, et  al., 2012; Stadler, 2010; Zhang, Stadler, Klopfstein, 
Heath, & Ronquist, 2015). I used the protocol within the R package 
paleotree version 3.1.3 (Bapst, 2012), which follows recommenda‐
tions within Matzke and Wright (2016), to generate an ‘empty’ mor‐
phological matrix and perform Bayesian Markov chain Monte Carlo 
(MCMC) tip‐dating analyses in MrBayes version 3.2.6 (Ronquist, 
Teslenko, et al., 2012). The three supertree topologies (representing 
alternative phylogenetic scenarios) were used as topological con‐
straints, and the uniform priors for the age of tips were set based on 
the occurrence dates’ information (i.e. obtained from the literature 
and the Paleobiology Database). A uniform prior was used for the 
root of the tree (for all three topologies), constraining it between 
245 and 260 Myr ago (given that a crocodylomorph origin older than 
the Early Triassic is unlikely; Irmis et al., 2013; Turner, Pritchard, & 
Matzke, 2017; Ezcurra & Butler, 2018). For each alternative phylo‐
genetic scenario, 10,000,000 generations were used in two MCMC 
runs (with four chains each), after which the parameters indicated 
that both runs converged (i.e. the potential scale reduction factor 
approached 1.0 and average standard deviation of split frequencies 
was below 0.01). In downstream analyses, for each phylogenetic sce‐
nario, I used either the maximum clade credibility (MCC) trees or 10 
trees randomly sampled from the posterior distribution, both after 
a burn‐in of 25%.

2.3 | Geometric morphometric analyses

I performed a series of geometric morphometric analyses in order 
to quantitatively investigate cranial shape variation in crocodylo‐
morphs. I was initially interested in observing which differences 
would arise from adding numerous specimens/species to the data‐
set of Wilberg (2017), such as in morphospace occupation. I was 
also interested in statistically testing significant differences in mor‐
phospace occupation between crocodylomorph subgroups as well 
as estimating the phylogenetic signal for the data (which specifi‐
cally asks how much of the shape variation can be explained by the 
phylogenetic history of the group). Finally, apart from investigating 
cranial shape variation between taxonomic groups, I also wanted to 
explore differences among distinct ecological lifestyle displayed by 
crocodylomorphs.

All geometric morphometric analyses presented here were 
performed using the package geomorph (version 3.0.7; Adams & 
Otárola‐Castillo, 2013) in R (version 3.5.1; R Core Team, 2018). 
Generalized Procrustes analysis (GPA) (Gower, 1975; Rohlf & Slice, 
1990) was performed prior to all analyses. Semilandmarks were 
defined using function define.sliders(), and the location of sliding 
semilandmarks during GPA alignment was optimized by minimizing 
the bending energy between the reference and target specimen 
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(i.e. argument ProcD = FALSE within in the function gpagen(); see 
Bookstein, 1997). Subsequently, the Procrustes coordinates of 
specimens were used as the input data for principal component 
analysis (PCA; Hotelling, 1933). As the landmark data used here 
were derived from two distinct sources (i.e. the dataset provided 
by Wilberg, 2017 and the data collected for the present study), par‐
ticular attention was paid to the potential impact of interobserver 
error on the cranial shape data. To quantitatively approach this 
issue, I used Procrustes ANOVA (i.e. linear models; Goodall, 1991; 
Klingenberg & McIntyre, 1998; Anderson, 2001) to compute the 
amount of variation caused by interobserver error (see Appendix 
S1 for further details).

To better visualize the morphospace occupation of different 
crocodylomorph subgroups (e.g. in PC1 vs. PC2 scatterplots), I 
used distinct colours and convex hulls (i.e. the area inside the min‐
imum convex polygon; Cornwell, Schwilk, & Ackerly, 2006) for six 
taxonomic groups: Crocodylia (with ‘thoracosaurs’), Tethysuchia, 
Thalattosuchia, Notosuchia and two paraphyletic groupings of non‐
crocodylian neosuchians (excluding tethysuchians and thalattosu‐
chians) and non‐mesoeucrocodylian crocodylomorphs (excluding 
thalattosuchians). To statistically assess the differences in the mor‐
phospace occupied by these groups, I used nonparametric multivar‐
iate analysis of variance (npMANOVA, performed with R package 
RVAideMemoire; Hervé, 2018) with all PC scores (see Appendix S1 
for further details). To examine the influence of phylogenetic his‐
tory on the observed shape variation, I calculated the phylogenetic 
signal (Kmult; Blomberg, Garland, & Ives, 2003; Adams, 2014) using 
function physignal(), with Procrustes coordinates of specimens and 
the MCC tree of each alternative phylogenetic scenario, performing 
1000 iterations.

I also divided crocodylomorph species into three categories 
representing distinct ecologies (or lifestyles): marine/aquatic, fresh‐
water/semi‐aquatic and terrestrial species. For that, I used infor‐
mation available in the literature (Mannion et  al., 2015; Wilberg, 
Turner, & Brochu, 2019), as well as in the Paleobiology Database (see 
Appendix S2 for the lifestyles assigned to each taxon). I then visually 
assessed the differences in morphospace occupation using colours 
and convex hulls and statistically scrutinized these differences using 
npMANOVA.

2.4 | Estimating disparity

After quantifying cranial shape variation in crocodylomorphs with 
geometric morphometric analyses, I wanted to explore how the pat‐
terns of cranial shape changed through time. For that, I needed to use 
metric to represent cranial shape disparity. Furthermore, by using 
this metric, I could also investigate cranial shape disparity within dif‐
ferent crocodylomorph groups (taxonomic and ecological groups). 
For this paper, I selected the sum of variances as the disparity metric, 
as it seems to be more robust for measuring morphological disparity 
through time than other metrics (such as range‐based measures; see 
Wills, Briggs, & Fortey, 1994; Butler, Brusatte, Andres, & Benson, 
2012; Guillerme & Cooper, 2018), but also because using this metric 

allows me to compare my results with those from other studies (e.g. 
Stubbs et al., 2013; Toljagić & Butler, 2013; Wilberg, 2017). Other 
methods were proposed to measure disparity, and often produce 
different results, but were not used herein (see Appendix S1 for fur‐
ther discussion).

I performed a series of sensitivity analyses for disparity‐through‐
time estimation, given that previous work demonstrated the sus‐
ceptibility of these kind of analyses to alternative methods for 
sub‐sampling taxa (Guillerme, 2018; Guillerme & Cooper, 2018) and 
to different phylogenetic hypotheses (Foth, Ascarrunz, & Joyce, 
2017). Thus, I used different sub‐sampling procedures (i.e. time‐bin‐
ning and time‐slicing methods, sensu Guillerme and Cooper (2018)), 
different numbers of time intervals (10 and 20), and multiple time‐
scaled phylogenetic trees (randomly sampled from the posterior dis‐
tribution of tip‐dating MCMC analyses) to assess the impact of these 
alternative approaches on the results. For these analyses, PC scores 
of all 128 PCs were used, both from terminal taxa and from ancestors 
(estimated using maximum‐likelihood ancestral state reconstruction; 
see Appendix S1 for further information on disparity‐through‐time 
sensitivity analyses). It is worth mentioning that, differently from 
time binning, time‐slicing method is a phylogeny‐based approach (i.e. 
using data from terminal taxa, nodes and branches) and takes into 
consideration those taxa contemporaneous at specific equidistant 
points in time (instead of taxa that were present between two points 
in time), resulting in even sampling (Guillerme & Cooper, 2018).

I also estimated disparity (=sum of variances) among different 
crocodylomorph subgroups (taxonomic and ecological groups), by 
subdividing the PC scores for each species into distinct subsets 
(again, using all 128 PCs). For both disparity through time and be‐
tween groups analyses, PC scores were bootstrapped 100 times (i.e. 
resampling all the rows of the matrix and then replacing them with a 
new random sample of rows). For disparity between groups, the data 
were also rarefied during each bootstrap replication (i.e. the number 
of taxa drawn was standardized in all groups). For that, the mini‐
mum number of species in a subset was used (which was 18 and 48 
taxa for taxonomic and ecological subsets, respectively). Significant 
differences in bootstrapped median values were statistically as‐
sessed using npMANOVA with 10,000 permutations, followed by a 
Bonferroni correction for adjusted p‐values (Anderson, 2001; Rice, 
1989). All disparity analyses (through‐time and between groups) 
were performed using the R package dispRity (Guillerme, 2018).

2.5 | Correlation with body size and 
ecological factors

An important aspect of this study aimed at examining the associa‐
tion between cranial shape variation and two other factors: body 
size and ecology. To investigate and visualize allometric changes and 
how much of shape variation can be explained by body size, I used 
Procrustes ANOVA, with function procD.allometry() in geomorph. 
I used log‐transformed centroid size as a proxy for total body size 
and calculated the regression scores (Drake & Klingenberg, 2008) 
for plotting purposes. To further inspect and visualize this possible 



8  |     GODOY

shape–size relationship, I regressed and plotted my cranial shape 
data against an independent body size dataset (a comprehensive 
crocodylomorph dataset of log‐transformed dorsal cranial length 
measurements, made available by Godoy et al. (2019)), using ordi‐
nary least square (OLS) and phylogenetic generalized least squares 
(PGLS) regressions. For PGLS, I incorporated the phylogenetic in‐
formation from the maximum clade credibility (MMC) trees (of each 
alternative phylogenetic scenario) and optimized branch length 
transformations between bounds with maximum likelihood using 
Pagel's λ (Pagel, 1999) (i.e. argument λ = ‘ML’ within in the function 
pgls() of the R package caper; Orme et al., 2018).

In addition to estimating disparity for distinct ecological catego‐
ries (see above), I further assessed the influence of ecological factors 
on crocodylomorph cranial shape by applying Procrustes ANOVA in 
a phylogenetic framework, using procD.pgls() function in geomorph. 
As for allometric Procrustes ANOVA, 10,000 permutations were 
performed, and I obtained the percentage of variation explained by 
the independent variables (body size or ecology) by dividing the sum 
of squares of the variable by the total sum of squares.

2.6 | Identifying regime shifts in crocodylomorph 
cranial shape evolution

Following the examination of the influence of body size and ecol‐
ogy on crocodylomorph cranial shape, I decided to further inves‐
tigate these associations by identifying cranial shape regime shifts 
on the crocodylomorph phylogeny. By doing this, I was specifically 
able to assess whether major changes in the crocodylomorph skull 
(represented by cranial shape regime shifts) were associated with 
ecological transitions and/or accompanied by major changes in body 
size (represented by previously documented body size regime shifts).

However, some studies have previously indicated intrinsic dif‐
ficulties of many of the presently proposed methods for automati‐
cally detecting regime shifts of phenotypic traits in phylogenies (e.g. 
Adams & Collyer, 2018; Bastide, Ané, Robin, & Mariadassou, 2018), 
many of which assume evolution under a nonuniform Ornstein–
Uhlenbeck [OU] process (although methods that assume other 
models/processes are also available; e.g. Rabosky, 2014; Castiglione 
et al., 2018, 2019; Didier, Chabrol, & Laurin, 2019). In particular, the 
combination of using multivariate data (such as shape data derived 
from geometric morphometric methods) and fossils as tips in a time‐
scaled tree (i.e. a nonultrametric tree) presents a challenge to cur‐
rently proposed methods, without an appropriate solution to date 
(Bastide et al., 2018).

Accordingly, for automatically detecting shifts of cranial shape re‐
gimes during the evolution of crocodylomorphs, I decided to reduce 
my analyses to a single (univariate) trait, using only PC1 scores of 
taxa, since this principal component represents a significant amount 
of total shape variation (more than 70%) and is biologically meaning‐
ful (i.e. translating, predominantly, changes in snout length). Thus, I 
am ultimately using PC1 scores as a proxy for total cranial shape vari‐
ation. Using only one dimension (i.e. PC1) allowed me to apply two 
methods for detecting regime shifts: bayou (Uyeda & Harmon, 2014) 

and SURFACE (Ingram & Mahler, 2013). Differently from other meth‐
ods proposed (e.g. l1ou (Khabbazian, Kriebel, Rohe, & Ané, 2016) 
and PhylogeneticEM (Bastide et al., 2018)), bayou and SURFACE can 
deal with nonultrametric trees and seem to work better with univar‐
iate data (Adams & Collyer, 2018). Even though not ideal (see Polly, 
Lawing, Fabre, and Goswami (2013), Uyeda, Caetano, and Pennell 
(2015), Adams and Collyer (2018), and Du (2019) for problems with 
dimension reduction), by comparing the outputs from both methods 
(i.e. looking for overall patterns of shift detection) I could visualize 
patterns of cranial shape variation along the crocodylomorph phy‐
logeny, as well as to compare to body size evolutionary patterns and 
to ecological transitions in the group.

For bayou, which is a Bayesian reversible‐jump approach (Uyeda 
& Harmon, 2014), I ran five MCMC chains of 1,000,000 generations 
for each of the three phylogenetic scenarios (using the MCC trees), 
with 30% burn‐in and a conditional Poisson distribution as a prior 
on the number of shifts. For SURFACE, which is a stepwise AIC pro‐
cedure (Ingram & Mahler, 2013), I used phylogenetic Bayesian in‐
formation criterion (pBIC) as an alternative to AICc in the backward 
phase of SURFACE (during which ‘convergent’ regimes are identi‐
fied), as the former is more conservative than AICc, generating lower 
rates of false positive identification of regime shifts (Benson, Hunt, 
Carrano, & Campione, 2018; Ho & Ané, 2014; Khabbazian et  al., 
2016). Furthermore, given that SURFACE seems to be very sensi‐
tive to both topological conformation and branch lengths, instead 
of MCC trees I used 30 time‐scaled crocodylomorph trees for the 
analyses (i.e. 10 randomly sampled trees of each alternative phy‐
logenetic scenario) and assessed regime shift identification on all 
trees, looking for overall patterns (see Appendix S1 for more details 
on SURFACE and bayou analyses). bayou analyses were performed 
with R package bayou (Uyeda, Eastman, & Harmon, 2018), whereas 
SURFACE analyses were performed with surface package (Ingram & 
Mahler, 2013). Implementation of pBIC functions in the backward 
phase of SURFACE model fits used scripts made available by Benson 
et al. (2018). See Appendix S3 for an R script with the all the analyses 
performed here (i.e. geometric morphometric, disparity, SURFACE, 
and bayou analyses), as well as landmark data and phylogenetic trees.

3  | RESULTS

3.1 | Cranial shape in different crocodylomorph 
subgroups

Procrustes ANOVA results show that interobserver error accounts 
for only 1.6% of total shape variation (Appendix S1: Table S1), al‐
lowing further analyses using the expanded dataset. The aspects of 
morphology represented by PC1 and PC2 (Figure 1) are equivalent 
to those found by Wilberg (2017), with PC1 (71.89% of the variation) 
mostly describing variation in snout length and PC2 (8.6%) changes 
in the quadrate condyle, in the position of the orbit in relation to the 
lateral outline of the skull, and in relative width of the snout with 
respect to the temporal region (see Appendix S1: Figure S3 for vari‐
ation in all PCs).
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Comparisons of the morphospaces occupied by different croc‐
odylomorph subgroups (2a, b, and Appendix S1: Figure S4) reveal 
a wide distribution of members of the crown group (crocodylians) 
and notosuchians. Crocodylians exhibit almost the entire range of 
morphological variation described by PC1 (i.e. long vs. short snouts), 
whereas most notosuchians occupy the region of short rostra (al‐
though the presence of Stolokrosuchus lapparenti in the analysis 
expands the morphospace occupation of the group towards the ‘lon‐
girostrine region’; Figure 2a, b, and Appendix S1: Figure S4). Pairwise 
statistical assessment using npMANOVA (Appendix S1: Table S2) re‐
inforces the apparently disparate cranial morphology of these two 
groups, as it shows that their morphospaces are significantly differ‐
ent to one another (p  =  .0015), and also from most of the groups 
tested (see Appendix S1 for further description of morphospace oc‐
cupation in other crocodylomorph subgroups).

Cranial shape disparity estimated for different crocodylo‐
morph subgroups revealed that Notosuchia has the highest cranial 
shape disparity among all groups assessed (Figure 2c). Crocodylia 
exhibits a smaller disparity, although slightly higher than the other 
four groups (Tethysuchia, Thalattosuchia, non‐crocodylian neosu‐
chians and non‐mesoeucrocodylian crocodylomorphs), which have 

comparable median values. Pairwise comparisons (Appendix S1: 
Table S3) show that disparity in both Notosuchia and Crocodylia 
is significantly different from that in all other groups analysed, 
whereas some other groups have statistically equivalent dispari‐
ties (e.g. thalattosuchians and non‐mesoeucrocodylian crocodylo‐
morphs, as well as tethysuchians and non‐crocodylian eusuchians). 
Similar results were recovered when fewer subsets of taxa were 
analysed (i.e. Notosuchia, Neosuchia, Thalattosuchia, non‐me‐
soeucrocodylian crocodylomorphs), with notosuchian dispar‐
ity still higher and significantly different from the other groups 
(Appendix S1: Figure S5 and Table S4).

Even though some crocodylomorph subgroups exhibit morpho‐
spaces that are significantly distinct from other groups, the relatively 
weak to moderate phylogenetic signal estimated for the data (Kmult 
values varied between 0.0866 and 0.2398 with different phyloge‐
netic scenarios; p < .05) suggests no strong degree of phylogenetic 
structure in patterns of cranial shape variation among taxa. This is 
consistent with the visual representation of phylogenetic informa‐
tion incorporated into tangent space (i.e. phylomorphospace plots of 
PC1 against PC2; see Appendix S1: Figure S6), with the multiple in‐
tersections of branches, even though some caution is advised when 

F I G U R E  1   Morphospace occupation of crocodylomorphs. PC1 vs. PC2 plot of cranial shape variation, using the expanded dataset, 
after removing the effect of interobserver error (by standardizing the landmark digitizing protocol). Different colours represent distinct 
crocodylomorph subgroups: non‐mesoeucrocodylian crocodylomorphs (excluding thalattosuchians), Notosuchia, non‐crocodylian 
neosuchians (excluding tethysuchians and thalattosuchians), Tethysuchia, Thalattosuchia and Crocodylia. PC1 and PC2 represent, 
respectively, 71.89% and 8.6% of total shape variation
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interpreting Kmult values, given that low values could simply be a re‐
sult of departure from Brownian motion evolution (which is assumed 
by Kmult; Blomberg et al., 2003).

3.2 | Disparity through time

In general, significant impacts on disparity‐through‐time analy‐
ses were observed when distinct tree topologies were used (see 
Appendix S4 for plots of all disparity‐through‐time analyses). A num‐
ber of factors can explain these differences (see Discussion), but 
most of them are probably arising from age uncertainties of taxa. 
Even for trees within a same phylogenetic scenario (i.e. same po‐
sitions of Thalattosuchia and gavialids), taxa ages are drawn from 
uncertain age ranges, creating differences among them.

Indeed, comparisons between the 10 trees within a same 
phylogenetic scenario can exemplify these dissimilarities in dis‐
parity‐through‐time analyses (which are usually more marked 
when a greater number of time intervals are used). For example, 
for Thalattosuchia sister to Crocodyliformes and gavialids within 
Gavialoidea, analyses using distinct trees disagree on the timing and 
magnitude of a disparity peak during the early evolution of the group 
(Figure 3). Whereas some trees show this peak beginning prior to the 
Triassic–Jurassic (T–J) boundary, other trees yield a later start, only 
after the boundary. Other differences include whether there is an 
increase or a decrease in disparity from the middle of the Neogene 
(Eocene) to the Recent, as well as if a peak observed during the Early 
Cretaceous corresponds to the highest disparity seen in the group's 
entire evolutionary history (Figure 3). Similarly, the use of alternative 

F I G U R E  2   Morphospace occupation and cranial shape disparity (sum of variances) of different crocodylomorph subgroups. (a) 
Morphospace occupied by members of the crown group (Crocodylia). (b) Morphospace occupied by notosuchians. (c) Cranial shape 
disparity of species divided into six taxonomic subsets (‘neosuchians’ represent non‐crocodylian neosuchians, without tethysuchians and 
thalattosuchians; ‘crocodylomorphs’ represent non‐mesoeucrocodylian crocodylomorphs, without thalattosuchians). PC scores of specimens 
were bootstrapped and rarefied for disparity calculation
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phylogenetic scenarios also impacted on disparity curves. For ex‐
ample, different positions of Thalattosuchia had greatest impact on 
disparity estimation during the Jurassic, since this corresponds to 
the age range of thalattosuchians.

Similarly, distinct time sub‐sampling methods (i.e. number of time 
intervals used and the use of time bins or time slices) also impacted 
in disparity estimation. The only exception was among analyses that 
used the time‐slicing method but whit different evolutionary models 
(i.e. punctuated or gradual model), which produced almost identi‐
cal results (Appendix S1: Figures S7, S8 and S9; see Appendix S4 
for all plots). In general, disparity‐through‐time analyses using more 
time intervals (either time bins or time slices) reconstruct more nu‐
anced changes in disparity, even though they also often have larger 
confidence intervals, due to less taxa being included in each time 
interval (Appendix S1: Figures S7, S8, and S9). When comparing dif‐
ferent time sub‐sampling methods, similar differences are observed 
to those seen when different tree topologies are compared (i.e. vari‐
ation in the timing and magnitude of disparity peaks). For example, 
the magnitude estimated for the peak seen at the end of the Early 
Cretaceous was usually greater when using the time‐slicing method.

Despite these dissimilarities arising from different time‐scaled 
trees and time sub‐sampling methods, most analyses seem to agree 

on some overall patterns of crocodylomorph cranial shape disparity 
through time (3; Appendix S1: Figures S7, S8 and S9). An early peak in 
disparity is frequently observed, most often during the Early Jurassic 
(although sometimes even prior to the Triassic–Jurassic boundary). 
Following a sharp decrease during the Middle Jurassic, disparity un‐
dergoes a continuous increase until the middle of the Cretaceous 
(Aptian–Albian), when maximum disparity is reached in most anal‐
yses. Subsequently, a near constant decline is observed during the 
Late Cretaceous and the Paleocene, with analyses only disagreeing 
whether it continues until the Recent or ceases during the Eocene. In 
these latter cases (more frequently seen in analyses using the time‐
slicing method), a sharp increase in disparity is seen in the Eocene, 
but is frequently followed by an equally sharped decrease until the 
Recent.

These overall patterns resemble those found by Wilberg (2017) 
in that a clear peak is observed in the Cretaceous, followed by a 
nearly continuous decline towards the Recent. Some differences, 
however, are also noted. Since Wilberg (2017) used different dispar‐
ity metrics in his analyses, the comparisons made here focused on 
variance‐based disparities. The first discrepancy arises from the fact 
that Wilberg (2017) restricted his study to Crocodyliformes (with the 
exception of thalattosuchians) and did not include any Late Triassic 

F I G U R E  3   Crocodylomorph cranial shape disparity (=sum of variances) through time. Each disparity curve used a different time‐scaled 
trees for disparity‐through‐time calculation. All trees share the same phylogenetic position of thalattosuchians (as sister to Crocodyliformes) 
and gavialids (within Gavialoidea) and used the same time sub‐sampling method (time‐binning method, with 20 equal‐length time bins). 
Discrepancies between results come from differences in branch lengths among trees, which reflect taxa temporal uncertainties. Light and 
dark green shades represent, respectively, 75% and 97.5% confidence intervals from 1,000 bootstrapping replicates. Analyses used PC 
scores from all PCs, both from terminal taxa and from ancestors (estimated using maximum‐likelihood ancestral state reconstruction)
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species, resulting in an absence of information about crocodylomorph 
disparity prior to the Jurassic. When using stratigraphic intervals as 
time bins for his disparity‐through‐time analyses (resulting in 36 time 
bins), Wilberg (2017) found two significant disparity peaks during 
the Jurassic (one in the Pliensbachian and another in the Aalenian–
Bajocian), whereas in most of my analyses, a single Jurassic peak was 
estimated, usually occurring from the Sinemurian to the Toarcian 
(Figure 3; Appendix S1: Figures S7, S8 and S9). The timing of the dis‐
parity peak in the Cretaceous is another divergence between the two 
studies, with the analyses performed by Wilberg (2017) indicating 
a Late Cretaceous peak (Cenomanian), whereas most of my analy‐
ses show a slightly earlier peak (Barremian–Albian). Finally, another 
difference was found in the pattern of disparity from the Eocene to 
the Recent. Whereas many of my analyses (particularly when using 
the time‐slicing method) indicate a disparity increase starting in the 
Eocene, this increase is not identified by the variance‐based analyses 
in Wilberg (2017).

3.3 | Allometric changes in cranial shape

Body size (=centroid size) has a significant (p < .005) effect on crocody‐
lomorph cranial shape, representing nearly 35% of the total observed 
variation (this is increased to more than 45% when only PC1 is consid‐
ered; Table 1). This relationship can be visualized in a shape vs. size plot, 
using the regressions scores (which shape variation represented is very 
similar to that of PC1) and log‐transformed centroid size (Figure 4b). 
Mapping PC1 (which represents more than 70% of all observed shape 
variation) into crocodylomorph phylogeny indicates that many of the 
largest taxa (such as some thalattosuchians and tethysuchians) also ex‐
hibit PC1 values associated with longer rostra, whereas most of the 
predominantly small‐bodied notosuchians show PC1 values related 
to shorter snouts (Figure 4a). Further examination of this relationship 
using an independent body size dataset (from Godoy et al., 2019) pro‐
vided very similar results, with a significant correlation between shape 
and size (using untransformed and phylogenetically corrected data; 
Appendix S1: Table S5 and Figure S10). These results indicate that body 
size is a strong predictor of cranial shape in the group. Consequently, 
the morphospace occupation of distinct crocodylomorph subgroups 

using ‘allometry‐free’ shape data (i.e. from size‐adjusted residuals, 
Figure  4c) reveals different patterns from that of uncorrected data 
(Figure 1 and Appendix S1: Figure S4), even though some general pat‐
terns can still be recognized. For example, crocodylian morphospace 
is comparatively more restricted, without exploring the region of ex‐
treme longirostrines (which is mainly dominated by thalattosuchians), 
whereas tethysuchians are more widespread, expanding their mor‐
phospace to that of more short‐snouted taxa.

3.4 | Cranial shape and ecology

Procrustes ANOVA results show a significant, although small (~3%, 
p < .05), influence of ecology (=lifestyles) on crocodylomorph cranial 
shape (Table  2). Consistently, npMANOVA results indicate that all 
three ecological categories have significantly different morphospace 
occupation (i.e. p <  .001). The PC1 vs. PC2 scatterplot (Figure  5a) 
reveals that most terrestrial taxa are restricted to the region of 
short‐snouted skulls along PC1 axis, although they have a wider 
distribution along PC2 axis. Conversely, aquatic crocodylomorphs, 
represented by some of the most extreme longirostrine forms (such 
as the gavialid Ikanogavialis gameroi), are mainly confined to the 
region of more elongated snouts (left side of PC1 axis; Figure 5a). 
Semi‐aquatic species are more widespread along the PC1 axis 
(Figure 5a), even though their distribution along the PC2 axis seems 
to be similar to that observed for aquatic forms. In terms of disparity 
(=sum of variances), terrestrial crocodylomorphs show significantly 
higher disparity than the other two categories, whereas aquatic and 
semi‐aquatic species exhibit similar median disparity (Figure 5b and 
Appendix S1: Table S6).

3.5 | SURFACE and bayou analyses

In general, a clear consistency is observed in regime shift detec‐
tion across different methods (6; see Appendix S5 for plots of all 
SURFACE and bayou results). In both SURFACE and bayou results, 
regime shifts are usually associated with ecological transitions 
and body size regime shifts in crocodylomorphs, which were pre‐
viously presented by other studies (Godoy et  al., 2019; Wilberg 

Effect SS MS % of variation F p

Total shape variation (all PCs)

 Centroid size 1.8246 1.82461 33.70073 105.22 .0001* 

 Residuals 3.5895 0.01734      

 Total 5.4142        

Shape variation represented by PC1

 Centroid size 1.8097 1.80967 46.49398 179.87 .0001* 

 Residuals 2.0826 0.01006      

 Total 3.8923        

Note: Procrustes ANOVA results: SS, sum of squares after 10,000 permutations; MS, mean 
squares; % of variation, obtained by dividing the sum of squares of the independent variable (cen‐
troid size) by the total sum of squares; F, F‐statistic; p, p‐value.
*Significant at alpha = 0.05.

TA B L E  1   Proportion of 
crocodylomorph cranial shape variation 
explained by body size (=centroid size)
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et al., 2019). In particular, regime shifts to longer snouts (i.e. PC1 
scores trait optima values, θ, >0.1) are frequently detected in 
groups of aquatic or semi‐aquatic species, which are usually large‐
bodied animals, such as thalattosuchians, tethysuchians, gavialids 
and ‘thoracosaurs’. The opposite is commonly true for terrestrial 
taxa, mostly associated with regimes of short rostra (θ  <  −0.1), 
even though some exceptions exist (such as the large‐bodied ter‐
restrial sebecosuchians). The ancestral cranial shape regime was 
frequently associated with shorter snouts (with values of ancestral 
trait optimum for all crocodylomorphs, Z0, ranging from −0.16 to 
−0.07), which is consistent with some of the oldest known croco‐
dylomorph taxa, such as ‘sphenosuchians’ and protosuchids. The 

use of different phylogenetic scenarios did not cause significant 
impacts on these overall results, with a consistent association be‐
tween trait optima values and crocodylomorph subgroups across 
different analyses.

It is worth mentioning, however, that some minor discrepan‐
cies were noted between SURFACE and bayou results. For example, 
SURFACE analyses usually identified more regime shifts (usually more 
than 15 shifts) than bayou, which found <15 shifts with highly sup‐
ported posterior probabilities (i.e. signal‐to‐noise ratio ≫ 1; Cressler, 
Butler, & King, 2015; Smaers, Gómez‐Robles, Parks, & Sherwood, 
2017) in all three phylogenetic scenarios. However, as the backward 
phase of SURFACE lumps together regimes with similar values of θ 

F I G U R E  4   Influence of body size on crocodylomorph cranial shape. (a) Phenogram mapping cranial shape (PC1 scores) onto 
crocodylomorph phylogeny (topology from the MCC tree with Thalattosuchia sister to Crocodyliformes and gavialids within Gavialoidea). 
Different colours represent distinct mono‐ and paraphyletic crocodylomorph subgroups. (b) The relationship between cranial shape 
(regression scores) and body size (log‐transformed centroid size) in crocodylomorphs. (c) PC1 vs. PC2 plot showing crocodylomorph 
subgroups morphospace occupation using ‘allometry‐free’ shape data (i.e. from size‐adjusted residuals). Colour key as in (a)
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(creating ‘convergent’ regimes; Ingram & Mahler, 2013), most of my 
SURFACE model fits ended up identifying <10 regimes (i.e. ‘conver‐
gent’ regimes sensu Ingram and Mahler (2013)). Despite these slight 
differences in the number of regime shifts, the magnitudes of θ val‐
ues associated with different crocodylomorph subgroups were con‐
sistent across methods. Additionally, the magnitudes of alpha (α, the 
strength of attraction) and sigma square (σ2, the rate of stochastic 
evolution) were also very similar across most of the better supported 
SURFACE analyses and all three bayou analyses (see Appendix S5 for 
all plots).

Another minor discrepancy was that some SURFACE analy‐
ses, more frequently those with Thalattosuchia placed outside 
Crocodyliformes, exhibited significantly simpler model fits (i.e. 
with much fewer regime shifts and usually unrealized low or 
high values of theta). This could be the results of the inability of 
the SURFACE algorithm to deal with certain tree topologies and 
branch lengths (similar to the unsuccessful/suboptimal model fits 
identified and demonstrated by Benson et  al., 2018). This does 
not undermine the SURFACE results presented here, but stresses 
the importance of using multiple time‐scaled trees for SURFACE 
analyses.

4  | DISCUSSION

4.1 | Crocodylomorph snouts and feeding ecology

Most of the shape variation in crocodylomorph skulls is repre‐
sented by changes in the snout, particularly in its length and width 
(Figure 1). This is consistent with what was found in previous geo‐
metric morphometric studies (e.g. Foth, Ascarrunz, et  al., 2017; 
Godoy et  al., 2018; Pierce et  al., 2008, 2009; Piras et  al., 2009; 
Sadleir & Makovicky, 2008; Wilberg, 2017; Young et al., 2010), in‐
dicating that this region of the skull has the highest morphological 
variation. High variability in crocodylomorph snout length has long 
been acknowledged (Brochu, 2001; Busbey, 1995; Langston, 1973), 
even leading early taxonomists (e.g. Lydekker, 1888) to erroneously 
classify crocodylomorphs into different groups (Pierce et al., 2008). 
More recently, however, cladistic studies (e.g. Clark, 1994; Jouve 
et al., 2006; Pol & Gasparini, 2009; Wilberg, 2015) have suggested 
that convergences of crocodylomorph snouts during their evolution‐
ary history have created a ‘longirostrine problem’, in which clades 
that are not necessarily closely related tend to be grouped together 

in phylogenetic analyses. In this context, the high plasticity of croco‐
dylomorph snouts could explain the weak to moderate phylogenetic 
signal found for my dataset, as well as datasets of other crocodylo‐
morph subgroups (such as crocodylians and thalattosuchians; Pierce 
et al., 2008, 2009).

Snout length can provide useful insights into ecological special‐
izations (Brochu, 2001; Busbey, 1995; McHenry et al., 2006; Pierce 
et al., 2008; Taylor, 1987; Walmsley et al., 2013), and recent examina‐
tions of crocodylomorph cranial functional morphology further indi‐
cate strong ecological selective pressures on the snout, particularly 

Total shape variation (all PCs)

Effect SS MS % of variation F p

Lifestyle 0.007586 0.0037932 3.098517 3.2935 .0079* 

Residuals 0.237256 0.0011517      

Total 0.244842        

Note: Procrustes ANOVA results: SS, sum of squares after 10,000 permutations; MS, mean 
squares; % of variation, obtained by dividing the sum of squares of the independent variable (life‐
style) by the total sum of squares; F, F‐statistic; p, p‐value.
*Significant at alpha = 0.05.

TA B L E  2   Proportion of 
crocodylomorph cranial shape variation 
explained by ecology (=lifestyles)

F I G U R E  5   Crocodylomorph cranial shape within different 
ecological categories (a) Morphospace occupation (PC1 vs. PC2 
plot) of crocodylomorphs divided into three ecological categories: 
aquatic/marine (n = 54), semi‐aquatic/freshwater (n = 107) and 
terrestrial (n = 48). (b) Boxplots showing cranial shape disparity 
(=sum of variances) with crocodylomorphs subdivided into the 
same three categories. PC scores of specimens (all PCs) were 
bootstrapped and rarefied for disparity calculation
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those arising from feeding behaviour (Ballell, Moon, Porro, Benton, 
& Rayfield, 2019; Gignac & O'Brien, 2016; Gignac, O'Brien, Turner, & 
Erickson, 2019; McCurry, Evans, et al., 2017; McHenry et al., 2006). 
Longer snouts are traditionally associated with a piscivorous diet, 
since the tip of the snout moves faster through water, facilitating the 
capture of small prey such as fish (McCurry, Walmsley, Fitzgerald, 
& McHenry, 2017; McHenry et  al., 2006; Thorbjarnarson, 1990; 
Walmsley et al., 2013). Thus, the widespread presence of longirostry 
in different crocodylomorph subgroups is presumably related to the 
numerous transitions to aquatic and semi‐aquatic lifestyles during 
crocodylomorph evolutionary history (Wilberg et  al., 2019), which 
are more directly connected to piscivory, highlighting the influence 
of ecology on the group's cranial shape evolution.

Furthermore, snout width also has important biomechanical im‐
plications, such as impacting on hydrodynamic pressure drag (e.g. 
longirostrine animals compensate the higher pressure from drag 

with narrower snouts; McHenry et al., 2006; Walmsley et al., 2013). 
Similarly, other regions of the crocodylomorph skull that vary sig‐
nificantly also have important implications for biomechanics and 
feeding strategies, such as the changes in quadrate condyle width, 
which are presumably associated with the craniomandibular joint 
(Kley et al., 2010; Ősi, 2014; Stubbs et al., 2013), even though rel‐
atively less variation is observed in these regions when compared 
to the snout.

4.2 | Cranial shape and size linked to ecology

Interpreting crocodylomorph cranial shape evolution within the con‐
cept of a Simpsonian Adaptive Landscape (Simpson, 1944, 1953) can 
be useful for characterizing macroevolutionary changes, since this 
concept includes ideas such as adaptive zones invasion and quan‐
tum evolution (Hansen, 1997, 2012; Stanley, 1973). This is consistent 

F I G U R E  6   Cranial shape regime shifts during crocodylomorph evolutionary history. Plots with results of bayou and SURFACE analyses 
using PC1 scores (as a proxy for skull shape). Branches are coloured according to different values of regime trait optima/theta (θ), with 
lighter colours associated with regimes of shorter snouts and darker colours representing regimes of more longirostrine taxa. Arrows show 
ecological transitions and body size regime shifts in some major crocodylomorph subgroups. Blue and green arrows indicate, respectively, 
transition to marine and freshwater lifestyles. Relative sizes of arrows represent different magnitudes of body size regime shifts (i.e. larger 
arrows are used for shits to regimes of larger sizes). Note that at the base of Crocodylomorpha, species are terrestrial and relatively small. (a) 
Results from bayou analysis using the MCC tree with Thalattosuchia sister to Crocodyliformes and gavialids within Gavialoidea. Parameter 
estimates alpha (α, strength of attraction) and sigma square (σ2, rate parameter) are mean values from all MCMC analyses with this tree 
topology (after 30% burn‐in). Only theta (θ) values with posterior probability higher than 0.5 are shown. (b) Results from SURFACE analyses 
using tree number 10 with Thalattosuchia within Neosuchia and gavialids within Gavialoidea. Likelihood information criterion (pBIC) and 
parameter estimate values are shown only for this tree topology. Theta values shown are those of ‘convergent’ regimes. Information on 
ecological transitions and body size regime shifts was derived from Wilberg et al. (2019) and Godoy et al. (2019), respectively
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with the methodological approach used here for characterizing 
cranial shape evolution (i.e. bayou and SURFACE methods), which 
assumes evolution under an OU process (even though the fit of al‐
ternative evolutionary models, such as those under Brownian mo‐
tion, was not investigated here). Within the paradigm of adaptive 
landscapes, the different regimes of nonuniform OU models (such as 
bayou and SURFACE) can be interpreted as adaptive zone (Mahler & 
Ingram, 2014; Uyeda & Harmon, 2014). Accordingly, taking into ac‐
count the selective pressures associated with these adaptive zones, 
shifts between macroevolutionary regimes can possibly drive large‐
scale patterns of phenotypic evolution.

In crocodylomorphs, the clear relationship between ecology 
and cranial shape and size is evidenced by the significant effects 
of size and lifestyle on cranial shape demonstrated here (Tables 1 
and 2; Figures  4b and 5; Appendix S1: Table S6 and Figure S10). 
Furthermore, the evolutionary patterns of cranial shape, which 
were characterized here by the bayou and SURFACE results 
(Figure 6), display similarities with those of body size (analysed by 
Godoy et al. (2019)) as well as with ecological transitions (demon‐
strated by Wilberg et  al. (2019)). For example, shifts to regime 
of more longirostrine skulls are usually associated with shifts to 
larger‐sized regimes and transitions to aquatic or semi‐aquatic life‐
styles. Previous studies investigating a link between larger body 
sizes and a more aquatic lifestyle have mostly focused on mammals 
(e.g. Downhower & Blumer, 1988; Smith & Lyons, 2011; Gearty, 
McClain, & Payne, 2018, although there are exceptions, such as for 
lissamphibians; Laurin, Girondot, & Loth, 2004; Laurin, Canoville, & 
Quilhac, 2009), but a similar pattern was also documented for croc‐
odylomorphs (Godoy et al., 2019). Within the concept of adaptive 
landscapes, this intricate relationship between cranial morphology, 
body size and ecology could be related to adaptations to an aquatic 
life, with selective pressures originated from intrinsic (e.g. phys‐
iological constraints associated with aquatic life) and/or extrinsic 
factors (e.g. resources availability, such as a predominance of fish 
as possible preys).

The association between cranial shape and diet can also provide 
insights on the higher disparity seen in terrestrial taxa (Figure 5b). 
Although aquatic and semi‐aquatic species also explore distinct 
feeding strategies other than piscivory (such as durophagy; Ősi, 
2014; Melstrom & Irmis, 2019), a higher variability is exhibited by 
terrestrial crocodylomorphs, with strategies such as herbivory, 
omnivory, insectivory and hypercarnivory (Godoy et  al., 2018; 
Melstrom & Irmis, 2019; Ősi, 2014). The greatest contribution to 
this higher disparity seen in terrestrial crocodylomorphs comes 
from notosuchians, most of which were terrestrials and displayed 
exceptionally high cranial disparity (Figure 2c), mirroring their rich 
fossil record (Mannion et al., 2015; Pol & Leardi, 2015) as well as 
their high morphological and body size disparities (Godoy et  al., 
2019; Stubbs et al., 2013; Wilberg, 2017). The drivers of such re‐
markable taxic diversity and morphological disparity in the group 
are only poorly explored, but some hint can be provided by their 
occurrence temporal and geographically constrained, since most 
notosuchians were confined to the Cretaceous of Gondwana 

(Mannion et  al., 2015; Pol & Leardi, 2015), with specific envi‐
ronmental conditions (hot and arid climate; Carvalho, Gasparini, 
Salgado, Vasconcellos, & Marinho, 2010). Indeed, Godoy et  al. 
(2019) found evidence for more relaxed modes of body size evo‐
lution in the group, which could also be the case for other pheno‐
typic aspects.

Apart from notosuchians, other crocodylomorph subgroups con‐
tribute to the higher disparity of terrestrial forms, mainly non‐mesoeu‐
crocodylian crocodylomorphs (such as protosuchids, gobiosuchids and 
shartegosuchoids; Pol & Norell, 2004; Clark, 2011; Irmis et al., 2013; 
Buscalioni, 2017; Dollman, Clark, Norell, Xing, & Choiniere, 2018), for 
which a series of cranial specializations have been previously reported 
(Buscalioni, 2017; Dollman et al., 2018). Among these, modifications 
related to brachycephaly (e.g. snout length reduction, rounded neu‐
rocranial shape, dorsal rotation of the mandibles, mandibular asym‐
metry and tooth loss and/or orientation change; Buscalioni, 2017) are 
possibly associated with feeding behaviour and might represent the 
result of ecological selective pressures.

4.3 | Cranial shape through time

Overall, disparity‐through‐time results were highly sensitive to 
changes in the time sub‐sampling method and particularly in the 
phylogenetic hypothesis used (Figure 3; Appendix S1: Figure S7, S8 
and S9). The considerable variation seen in these results has multi‐
ple causes. First, distinct time‐scaled trees vary in assuming different 
stratigraphic dates for the occurrences of individual taxa (reflecting 
the uncertainties in the stratigraphic occurrences of most taxa used 
in these analyses, with many taxa known from point occurrences but 
with stratigraphic uncertainty often spanning two or more stages), as 
well as in different resolutions for polytomies (which were randomly 
resolved in each tree). Foth, Fernandez Blanco, et al. (2017) have pre‐
viously investigated the influence of temporal and topological uncer‐
tainty on disparity though time in turtles (Testudinata) and reported 
comparable impacts. Similarly, although not tested here, it is very likely 
that alternative time‐scaling methods (e.g. a posteriori time‐scaling ap‐
proaches sensu Lloyd, Bapst, Friedman, & Davis, 2016) would also im‐
pact on disparity‐through‐time estimation (see Bapst, 2014 for further 
discussion). Furthermore, as distinct trees were used for estimating 
the ancestral states (i.e. landmark coordinates of hypothetical ances‐
tors), they presumably produce distinct PC scores for ancestors, which 
were subsequently used in disparity estimation. Similarly, distinct ap‐
proaches to estimate ancestral states could also potentially impact on 
the results (see Ekman, Andersen, & Wedin, 2008; Slater, Harmon, & 
Alfaro, 2012). Finally, the use of distinct time sub‐sampling methods, 
as well as different numbers of time intervals (either time bins or time 
slices), results in different taxa being sampled in each time interval, 
since the rates of sedimentation (and fossilization) are uneven in space 
and time (Butler et al., 2012; Guillerme & Cooper, 2018).

These results shed light on the importance of using multiple 
time sub‐sampling methods for these analyses (as previously high‐
lighted by Guillerme & Cooper, 2018), but also of multiple phyloge‐
netic hypotheses, especially for groups with major uncertainties in 
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stratigraphic occurrence dates and phylogenetic relationships (as 
previously acknowledged by Foth, Fernandez Blanco, et  al., 2017). 
However, many other previous studies have ignored this issue, often 
presenting results based on one time‐scaled phylogeny and one time 
sub‐sampling approach (e.g. Brusatte, Benton, Ruta, & Lloyd, 2008a; 
Brusatte, Benton, Ruta, & Lloyd, 2008b; Foth & Joyce, 2016; Stubbs 
et al., 2013). In fact, the discrepancies noted between the results pre‐
sented here and in Wilberg (2017) could at least partially be explained 
by the use a single tree in the latter study (as well as by the differ‐
ent sample sizes and time sub‐sampling methods used). Accordingly, 
rather than using a single analysis, perhaps a better way to report the 
results might be by describing shared patterns among multiple out‐
puts, as done here as well as in Foth, Fernandez Blanco, et al. (2017).

Regarding the overall disparity‐through‐time results, the peaks 
and declines observed are presumably associated with the appear‐
ance and extinction of distinct crocodylomorph subgroups, such as 
thalattosuchians in the Jurassic and notosuchians in the Cretaceous, 
as already pointed out by previous studies (Stubbs et  al., 2013; 
Wilberg, 2017). Some of these peaks can be more securely be linked 
to abiotic factors, such as palaeotemperature. For example, as sug‐
gested by Wilberg (2017), the Eocene peak could be related to the 
Early Eocene Climatic Optimum (Zachos, Dickens, & Zeebe, 2008), 
reflecting an increase in diversity (Mannion et al., 2015). However, al‐
though this relationship was not quantitatively investigated here (i.e. 
through statistical correlation test), it is difficult to draw more general 
conclusions, such as that palaeotemperature (or other environmen‐
tal factor) drives overall patterns of crocodylomorph cranial disparity 
through time. Similarly, other large‐scale investigations of crocodylo‐
morph evolution (such as species diversity and body size evolutionary 
patterns; Mannion et al., 2015; Godoy et al., 2019) found more signif‐
icant influence of abiotic factors only at smaller temporal and phylo‐
genetic scales. This would be consistent with the different biological 
and physiological characteristics presumed for distinct crocodylo‐
morph subgroups (which range from species highly adapted to a fully 
aquatic life to terrestrial and nearly cursorial forms), for which differ‐
ent responses to environmental changes are expected. Accordingly, 
within the paradigm of adaptive landscapes (Hansen, 1997, 2012; 
Simpson, 1944, 1953), overall patterns of phenotypic evolution (such 
as cranial shape) are more likely to reflect clade‐specific adaptations 
related to the invasion of new adaptive zones (with in turn involve 
new specific environmental conditions), particularly when analysing 
large‐scale events, across numerous subgroups.

This could also help to understand the nearly continuous de‐
cline in crocodylomorph disparity since the Late Cretaceous, which 
is mainly represented by members of the crown‐group Crocodylia. 
With few exceptions, crocodylians are predominantly semi‐aquatic 
species (Wilberg et al., 2019), what could explain their relatively low 
cranial disparity (Figure  2c) despite being the most specious croc‐
odylomorph subgroup in my analyses (n  =  89). The extinction of 
other subgroups, which were occupying a wider variety of ecological 
niches, combined with the presence of predominantly semi‐aquatic 
forms during the Cenozoic, could be a consequence of differential 
responses to environmental changes (such as global cooling; Zachos 

et al., 2008), which potentially led to a reduced niche availability. A 
similar rationale was outlined by Godoy et al. (2019) to explain the 
decrease in body size disparity seen for crocodylomorphs since the 
Late Cretaceous. Regarding body size, Godoy et  al. (2019) argued 
that the pattern of global cooling documented for the last 66 million 
years would be related to a more restricted geographical distribution 
of crocodylomorphs (that became more confined to the tropics), and 
that this probably led to the selective extinction of small‐bodied spe‐
cies. Therefore, the current scenario of most modern crocodylian spe‐
cies being piscivorous semi‐aquatic animals, within relatively limited 
variability of body sizes (i.e. large animals) and cranial shapes, could 
be the result of a long‐standing pattern of habitat loss in crocodylo‐
morphs, leading to a narrower range of ecologies and morphologies.
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