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1  |  INTRODUC TION

Organisms have evolved a remarkable disparity of body plans, sizes, 
and functions (Smith et al., 2016), and the relationship between 

phenotypic evolution and species diversification is a widely dis-
cussed subject in evolutionary biology (e.g., Cooney & Thomas, 2021; 
Stanley, 1973). Body size in particular has been shown to affect sev-
eral traits in organisms, especially life history (Brown et al., 1993; 
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Abstract
Organisms display a considerable variety of body sizes and shapes, and macroevo-
lutionary investigations help to understand the evolutionary dynamics behind such 
variations. Turtles (Testudinata) show great body size disparity, especially when their 
rich	fossil	record	is	accounted	for.	We	explored	body	size	evolution	in	turtles,	testing	
which	 factors	might	 influence	 the	 observed	 patterns	 and	 evaluating	 the	 existence	
of long- term directional trends. We constructed the most comprehensive body size 
dataset for the group to date, tested for correlation with paleotemperature, estimated 
ancestral body sizes, and performed macroevolutionary model- fitting analyses. We 
found	no	evidence	for	directional	body	size	evolution,	even	when	using	very	flexible	
models, thereby rejecting the occurrence of Cope's rule. We also found no significant 
effect of paleotemperature on overall through- time body size patterns. In contrast, 
we found a significant influence of habitat preference on turtle body size. Freshwater 
turtles display a rather homogeneous body size distribution through time. In contrast, 
terrestrial and marine turtles show more pronounced variation, with terrestrial forms 
being restricted to larger body sizes, up to the origin of testudinids in the Cenozoic, 
and	marine	turtles	undergoing	a	reduction	in	body	size	disparity	after	the	extinctions	
of many groups in the mid- Cenozoic. Our results, therefore, suggest that long- term, 
generalized	patterns	are	probably	explained	by	factors	specific	to	certain	groups	and	
related at least partly to habitat use.
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White et al., 2022), metabolic rates (Blanckenhorn, 2000; 
Clauss et al., 2007;	 D'Amico	 et	 al.,	 2001), and ecology (Brown 
&	Maurer,	1986; Smith et al., 2018; White et al., 2007). For such 
reasons, the topic has always intrigued researchers, and its role in 
microevolution (i.e., natural and artificial selection) and macroevo-
lution	 (e.g.,	 acquisition	 of	 new	 traits	 or	 production	 of	 ecological	
opportunities)	has	been	extensively	debated	(Blanckenhorn,	2000; 
Maurer	 et	 al.,	1992; Peters, 1983; Schmidt- Nielsen & Knut, 1984; 
Stanley, 1973).

The	evolution	of	body	size	is	commonly	explained	in	the	light	of	
different hypotheses that attempt to elucidate patterns of disparity, 
such as Cope's rule (or Deperet's rule; Stanley, 1973), a hypothesized 
tendency lineages to evolve toward larger body sizes (Cope, 1896). 
Although	directional	trends	of	increasing	body	size	have	been	iden-
tified in a few groups, including medium-  to large- bodied mammals 
(Alroy,	1998) and pterosaurs (Benson et al., 2014), non- directional 
patterns are present in many other groups (Benson et al., 2018; 
Godoy et al., 2019; Laurin, 2004;	Moen,	2006). The generalization of 
hypothesized	evolution	toward	large	body	sizes	has	also	been	ques-
tioned, because there is no apparent need for selection to produce 
ever larger sizes in most lineages (Gould, 1988).

In	 spite	 of	 the	 presence	 of	 hypotheses	 to	 explain	 evolution-
ary variation of body size in ectothermic vertebrates, few groups 
have been studied in a comprehensive manner (but see Gearty & 
Payne, 2020; Godoy et al., 2019;	Heim	et	al.,	2015; Smith et al., 2016), 
with most studies focusing on groups of overall higher metabolic 
rates, such as mammals and dinosaurs, including birds (Benson 
et al., 2014, 2018; Cooper & Purvis, 2010; Cullen et al., 2020; Gearty 
et al., 2018; Kubo et al., 2019;	Raia	&	Meiri,	2011). Turtles, in par-
ticular, have a rich fossil record and relatively stable phylogenetic 
relations, which provide a reliable framework for macroevolutionary 
studies. The presence of fossils is particularly important because the 
inclusion of deep- time data can have a large effect on the outcomes 
of macroevolutionary analyses.

Turtles include 357 living species (Rhodin et al., 2021), but the 
fossil record of crown- group Testudines, and that of the more in-
clusive group Testudinata, reveals a much richer history (Gaffney 
et al., 2006; Joyce et al., 2013). The early evolution of the turtle 
stem- lineage is thought to have occurred in terrestrial habitats 
(Joyce, 2017; Joyce & Gauthier, 2004; Lautenschlager et al., 2018; 
Scheyer et al., 2022; Scheyer & Sander, 2007),	 but	 aquatic	 habits	
evolved toward the crown group, and represents the ancestral con-
dition for Testudines (Joyce, 2017; Joyce & Gauthier, 2004; Sterli 
et al., 2018). Therefore, possibly reflecting the different habitats 
occupied through time (although not only for that reason), the 
group shows considerable morphological disparity in their limbs, 
skull, carapace shape, and body size (Benson et al., 2011; Dickson 
& Pierce, 2019; Foth et al., 2017;	 Hermanson	 et	 al.,	 2022; Jaffe 
et al., 2011; Joyce & Gauthier, 2004; Lautenschlager et al., 2018; 
Vlachos & Rabi, 2018).

Considering	the	relatively	low	extant	diversity	of	turtles,	partic-
ularly	when	compared	 to	mammals,	birds,	or	 squamates,	 the	body	
size disparity of the group is striking. The smallest living testudine, 

Homopus signatus,	has	an	adult	carapace	length	of	about	100 mm,	and	
the largest one, Dermochelys coriacea,	reaches	more	than	2200 mm	
(Rhodin et al., 2021). Furthermore, fossils display an even broader 
range	of	body	sizes,	including	the	South	American	Stupendemys geo-
graphicus,	with	 a	 carapace	 length	of	more	 than	2800 mm	 (Cadena	
et al., 2020). This emphasizes the importance of including the 
available fossil diversity when characterizing patterns of body size 
evolution in Testudinata (and see Finarelli & Flynn, 2006; Fritz 
et al., 2013), which has been largely disregarded in most previous at-
tempts	(Eastman	et	al.,	2011; Jaffe et al., 2011;	Moen,	2006; Uyeda 
&	Harmon,	2014).

Using data from living species only, previous studies presented 
several	hypotheses	 to	explain	 the	observed	body	 size	variation	of	
turtles.	 For	 example,	 it	 has	 been	 suggested	 that	 such	 variation	 is	
intrinsically related to habitat, with marine species and island tor-
toises usually possessing larger sizes than freshwater and mainland 
taxa	(Jaffe	et	al.,	2011). This resembles the large body size attained 
by marine mammals (e.g., Gearty et al., 2018) and, in some as-
pects, the “island rule” seen in some mammals, reptiles, and birds 
(Lomolino, 2005).	 However,	 Uyeda	 and	 Harmon	 (2014) analyzed 
turtle body size using unconstrained evolutionary models and sug-
gested	that	the	scenario	for	turtle	optimal	body	size	is	more	complex	
than simple differences in habitats, with multiple macroevolution-
ary body size shifts along the tree. Furthermore, analysis of tortoise 
(Testudinidae) body size, including fossils, did not find support for 
the island effect (Vlachos & Rabi, 2018).	Moen	 (2006) tested for 
evolutionary	trends	in	extant	cryptodires,	but	found	no	support	for	
directional	 body	 size	 evolution.	Moreover,	 it	 is	 not	 currently	 clear	
how temperature influenced long- term body size patterns in turtles, 
with ongoing discussion about the group following overall rules such 
as a latitudinal gradient, with larger body sizes seen in colder regions 
(Angielczyk	et	al.,	2015;	Ashton	&	Feldman,	2003).	Yet,	except	for	
Vlachos and Rabi (2018) and Sterli et al. (2018), these hypotheses 
have	yet	to	be	tested	in	a	framework	including	both	extinct	and	ex-
tant	 taxa.	 In	 this	study,	we	compiled	 the	 largest	body	size	dataset	
ever assembled for Testudinata, which was used to investigate the 
tempo and mode of body size evolution in the group, as well as test 
for possible biotic and abiotic drivers.

2  |  METHODS

2.1  |  Body size data

Straight-	line	maximum	dorsal	carapace	 length	 (SCL)	was	used	as	a	
proxy	 for	 turtle	 body	 size	 (Jaffe	 et	 al.,	2011).	 Aiming	 to	maximize	
sampling, we also used linear regressions to estimate SCL from the 
ventral	skull	length	(measured	from	the	rostral	tip	of	the	premaxil-
lae to the caudal tip of the occipital condyle) for some specimens 
lacking	carapace.	About	7.5%	of	the	SCL	data	in	our	dataset	was	es-
timated	from	the	ventral	skull	length.	Measurements	were	collected	
from photographs (personal archive or the literature), using soft-
ware ImageJ (Schneider et al., 2012). The final dataset includes body 

 20457758, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10201 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [27/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 23FARINA et al.

size	data	for	795	taxa,	considerably	more	than	 in	previous	studies	
(e.g.,	Angielczyk	et	al.,	2015 = 245	taxa;	Jaffe	et	al.,	2011 = 226	taxa;	
Moen,	2006 = 201	taxa;	Vlachos	&	Rabi,	2018 = 59	taxa).	In	addition,	
we also collected habitat preference and chronostratigraphic infor-
mation	for	these	same	taxa	using	the	literature	and	the	Paleobiology	
Database (PBDB).

2.2  |  Supertree construction and time calibration

To account for major uncertainties within the phylogenetic rela-
tions of the main groups of Testudinata, two informal supertrees 
were	manually	 assembled	 using	Mesquite	 version	 3.61	 (Maddison	
&	Maddison,	2018). These were based on two phylogenetic hypoth-
eses,	Evers	et	al.	(2019) and Sterli et al. (2018), hereafter referred to 
as	“Ev19”	and	“St18,”	respectively.	The	most	significant	differences	
between the two supertrees are the positions of Protostegidae and 
Thalassochelyidia (sensu Joyce et al., 2021). Protostegids are stem- 
Chelonioidea	 and	Thalassochelyidia	 are	 stem-	Pleurodira	 in	 “Ev19,”	
whereas both groups belong to the turtle stem- lineage in “St18” 
(in which they are originally represented only by Santanachelys 
gaffneyi and Solnhofia parsoni, respectively). Less inclusive groups 
were positioned based on several additional hypotheses (Table A1). 
Both	supertrees	include	four	outgroup	taxa	(Eunotosaurus africanus, 
Eorhynchochelys sinensis, Pappochelys rosinae, and Odontochelys sem-
itestacea),	which	were	used	for	calibration	purposes.	Each	supertree	
includes	a	total	of	846	taxa,	659	of	which	are	shared	with	our	body	
size dataset.

Both supertrees were time- scaled using Bayesian infer-
ence	 under	 a	 fossilized	 birth	 death	 process	 (Heath	 et	 al.,	 2014; 
Stadler, 2010),	 performed	 with	 MrBayes	 version	 3.2.7	 (Ronquist	
et al., 2012). We used R (version 4.0.2; R Core Team, 2021) pack-
age paleotree (Bapst, 2012)	to	create	a	MrBayes	command	for	time-	
calibration analyses. The function createMrBayesTipDatingNexus() 
allows the use of “empty” morphological matrices in clock- less 
tip- dating analyses (Bapst, 2012; Gearty & Payne, 2020; Godoy 
et al., 2019).	The	two	supertrees	(“Ev19”	and	“St18”)	were	entered	
as topological constraints (i.e., for two separate time- scaling analy-
ses) and data on occurrence times (= tip ages) were obtained from 
the primary literature and supplemented by the PBDB. We used uni-
form constraints on the tip ages, and the tree age prior was set as 
a uniform distribution defined between the Kungurian and Roadian 
stages	of	 the	Permian	 (283.5	and	268.8	million	years	ago,	Ma),	 as	
this	would	represent	a	maximum	possible	age	for	the	origin	of	the	
group.	All	 other	priors	were	unaltered	 from	 the	default	 setting	of	
the createMrBayesTipDatingNexus() function, which were guided 
by	 the	 best	 practices	 of	Matzke	 and	Wright	 (2016; see Gearty & 
Payne, 2020	 for	more	details).	 Two	MCMC	 runs,	with	 four	 chains	
each,	were	set	 for	20,000,000	generations,	with	25%	of	the	trees	
discarded as burn- in. Convergence of both runs was verified when 
values of potential scale reduction factors approached 1.0 and aver-
age	standard	deviation	of	split	frequencies	was	below	0.01.	For	both	
supertrees,	we	used	either	the	maximum	clade	credibility	(MCC)	tree	

or a set of 10 randomly selected trees from the post- burn- in poste-
rior	to	perform	subsequent	analyses.

2.3  |  Characterizing body size patterns in 
Testudinata

The	entire	body	size	dataset	of	795	taxa	was	used	to	construct	body	
size through- time plots. Welch's two sample t- tests (Welch, 1947) 
were used to assess significant changes across different time in-
tervals	 (i.e.,	 Triassic,	 Jurassic,	 Early	 Cretaceous,	 Late	 Cretaceous,	
Paleogene, Neogene, and Quaternary), focusing on mean body size 
and disparity, using the standard deviation as a metric of body size 
disparity. To assess the influence of ecology on the body size distri-
bution, habitat preference information (i.e., terrestrial, freshwater, 
and marine) was also incorporated into the body size through- time 
plots. To further test the influence of ecology, we used analysis of 
variance	(ANOVA),	performed	with	R	function	aov(), as well as the 
RRPP approach (randomizing residuals in a permutation procedure; 
Adams	&	Collyer,	2018), which accounts for phylogenetic depend-
ency	 (i.e.,	 “phylogenetic	 ANOVA”),	 performed	 with	 the	 lm.rrpp() 
function, from the R package RRPP	(Collyer	&	Adams,	2018, 2019), 
and	using	the	MCC	tree	of	each	supertree	(“Ev19”	and	“St18”).

We also tested for the presence of phylogenetic signal in the 
body size data using the R function phyloSignal() (Keck et al., 2016), 
using 10 randomly selected trees from the posterior distribution of 
trees of both supertrees. We used 1000 replicates and estimated 
Pagel's lambda (λ) as our metric of phylogenetic signal given that this 
index	is	robust	when	using	trees	with	poorly	resolved	branch	length	
information	 (Molina-	Venegas	 &	 Rodríguez,	 2017;	 Münkemüller	
et al., 2012).

To further characterize body size evolution within Testudinata, 
we	used	maximum	likelihood	to	estimate	ancestral	body	sizes	under	
Brownian	motion	 (BM),	using	the	 fastAnc() function of the R pack-
age phytools (Revell, 2012). Inferred ancestral sates were performed 
with	both	the	complete	supertrees	(i.e.,	using	the	MCCT	trees	with	
all	659	taxa,	including	fossils	and	extant	species)	and	a	subtree	with	
only	extant	taxa	(i.e.,	dataset	reduced	to	312	taxa).

2.4  |  Testing for the presence of Cope's rule

To test if Cope's rule played an important role in turtle body size 
evolution, we fitted different evolutionary models to our body size 
data in both supertrees. To account for temporal and phylogenetic 
uncertainties, 10 time- scaled versions of each alternative supertree 
(“Ev19”	and	“St18”)	were	used.

We fitted four uniform phenotypic models to our data, starting 
with	the	uniform	BM	model,	in	which	body	size	undergoes	an	uncon-
strained, single- rate random walk along phylogenetic lineages, re-
sulting	in	diffusive	evolutionary	expansion	(Felsenstein,	1973, 1985; 
Freckleton	 &	 Harvey,	 2006). This pattern is consistent with sev-
eral possible causes, including genetic drift or wandering adaptive 
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optima (Felsenstein, 2003), between which genetic drift seems a less 
likely	explanation	at	macroevolutionary	scales.	The	model	has	two	
parameters:	 sigma	 squared	 (σ2), which indicates evolutionary rate, 
and the root state of the trait at time zero, sometimes represented 
by X(0) (Felsenstein, 1973).

We also fitted three other uniform models: (1) the “mean_trend” 
(or	“drift”)	model,	which	is	a	modification	of	the	BM	model	that	in-
corporates a parameter (μ) describing an uniform directional trend 
along all branches of the phylogeny (Pagel, 2002);	(2)	the	EB	model	
(also	known	as	“ACDC	model”;	Blomberg	et	al.,	2003), in which lin-
eages	experience	a	burst	of	 rapid	 increase	 in	 trait	variation	 in	 the	
beginning of their evolutionary history, followed by a deceleration 
(Harmon	et	al.,	2010); (3) the Ornstein– Uhlenbeck (OU) model, which 
incorporates attraction of trait values (represented by the α param-
eter) toward an optimum (θ) (Butler & King, 2004;	Hansen,	1997). In 
the case of the OU model fitted here, the parameters (α and θ) were 
not allowed to vary along the tree.

We also fitted 13 non- uniform trend- like models to our data. 
Unlike uniform “mean_trend” model, these multi- regime models 
allow the μ parameter— the amount of directional change in a trait 
through	time	(Hunt	&	Carrano,	2010; Pagel, 2002)— to vary along the 
tree in temporal or node shifts (“time- shift model” and “node- shift 
model,” respectively). We fitted “time- shift” models (which allow 
shifts in all branches after a determined point in time) allowing the 
number of shifts to vary from one to three; and “node- shift” models 
(which allow shifts in some branches) allowing the number of shifts 
to vary from 1 to 10, resulting in a total of 13 multi- trend models 
(3 “time- shift” and 10 “node- shift” models). In this study, both uni-
form trend and multi- trend models were fitted as a representation 
of the Cope's rule, given that it is described as a multi- lineage direc-
tional trend toward larger sizes (Cope, 1887, 1896; Stanley, 1973). 
Moreover,	 among	 mammals,	 the	 foundational	 example	 of	 Cope's	
rule, directional body size evolution is only present in some lineages 
(e.g.,	Alroy,	1999), more consistent with a “node- shift” model, with 
multiple independent origins of directional evolution.

Akaike's	 information	 criterion	 for	 finite	 sample	 sizes	 (AICc)	
was	 used	 for	 the	 selection	 of	 the	 best	 fit	 (Akaike,	 1974).	Model-	
fitting analyses were performed using R package geiger	 (Harmon	
et al., 2008) and the scripts made available by Benson et al. (2018) 
for fitting the multi- trend models, using the R packages mnormt 
(Azzalini	&	Genz,	2022), ape (Paradis & Schliep, 2019), geiger	(Harmon	
et al., 2008), phytools (Revell, 2012), phangorn (Schliep, 2011), and 
surface	(Ingram	&	Mahler,	2013).

2.5  |  Influence of paleotemperature

We used regressions to test for the possible influence of global pale-
otemperature	on	turtle	body	size	(795	taxa).	As	a	proxy	for	paleotem-
perature, we compiled δ18O data (lower δ18O values indicate higher 
environmental temperature) from two different sources. First, we 
used tropical isotopic data collected in tropical regions by Prokoph 
et al. (2008), who assembled isotopic information from marine 

organisms,	extending	from	Precambrian	to	recent.	Furthermore,	we	
also used global paleotemperature data from Zachos et al. (2008), 
which compiled information about isotopic ratios in foraminifer 
shells	from	the	Maastrichtian	to	the	recent.	We	tested	for	correla-
tion between both temperature curves and our body size indices, 
including	maximum,	minimum,	and	mean	body	size,	as	well	as	body	
size disparity (= standard deviation).

Correlation between body size data and paleotemperature was 
initially	assessed	using	ordinary	least	squares.	In	addition,	to	avoid	
potential issues created by temporal autocorrelation, we used gen-
eralized	least	squares	with	a	first-	order	autoregressive	model	incor-
porated	 (tsGLS;	Fox	&	Weisberg,	2018), using the R package nlme 
(Pinheiro et al., 2022). The data were divided into time intervals, 
using	 approximately	 equal-	length	 (~9 million years) stratigraphic 
time	bins	(from	Mannion	et	al.,	2015). For each time bin, we calcu-
lated body size indices (disparity [=	standard	deviation],	maximum,	
minimum, and mean body size) and weighted mean δ18O values using 
R package disparity (Guillerme, 2018).

The figures presented by this study were made using the R pack-
ages palaeoverse (Jones et al., 2023) and deeptime (Gearty, 2023).

3  |  RESULTS

3.1  |  Inferred ancestral states

Inferred	ancestral	states	based	on	both	supertrees	(“Ev19”	or	“St18”;	
Figure A3 and Figure 1) show similar results. For this reason, the 
description below is based solely on “St18” (Figure 1).

When	 fossil	 taxa	 are	 included	 in	 the	 analysis,	 ancestral	 size	
estimates for most major (= more diverse) turtle subgroups (e.g., 
Testudines, Pleurodira, Chelidae, Pelomedusidae, Cryptodira, 
Trionychidae, and Testudinidae) were broadly similar to one another, 
with	SCL	values	between	500	and	230 mm	(Figure 1c). Similar ances-
tral values are also seen among stem- turtles, with paracryptodires 
remaining	 within	 approximately	 this	 body	 size	 range	 throughout	
their evolution and meiolaniids increasing their body size over 
time,	 from	an	 ancestral	 body	 size	estimated	 in	645 mm	 (Figure 1). 
Among	pleurodires,	several	extinct	branches	splitting	before	the	or-
igin of Podocnemididae show smaller body sizes (between 100 and 
250 mm;	 Figure 1a,c), although the estimated ancestral body size 
for	Podocnemididae	is	larger	(between	300	and	500 mm;	Figure 1c). 
Within Cryptodira, crown- groups Testudinidae, Geoemydidae, 
and	 Emydidae	 have	 similar	 ancestral	 body	 sizes	 (about	 250 mm;	
Figure 1c).	Chelonioidea	show	ancestral	body	sizes	above	500 mm,	
and Kinosternidae was one of the few main clades with an estimated 
ancestral	body	size	close	to	(or	slightly	above)	200 mm.

The inclusion of fossils affects ancestral body size estimate for 
most	major	 lineages	 (compare	square	symbols	 [ignoring	fossils]	 to	
circles [including fossils] in Figure 1c). No specific directional in-
fluence is noted when paleontological data are included. For some 
groups	(e.g.,	Chelidae,	Podocnemididae,	Emydidae,	Geoemydidae),	
the	inclusion	of	extinct	taxa	results	in	a	slight	increase	in	estimated	
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body sizes, whereas for others (e.g., Pelomedusidae, Trionychidae, 
Testudinidae, Chelydridae, Kinosternidae, Cheloniidae), a decrease 
is observed. The magnitude of this effect varies; the largest changes 
were seen in the nodes circumscribing Cryptodira, Trionychidae, 
Chelydridae, Kinosternidae, and Cheloniidae (Figure 1). It is worth 
noting that even a slight increase in fossil sampling changed the es-
timates in relation to previous studies. For instance, the ancestral 
body	 size	 for	 Pan-	Testudinidae—	based	 on	 78	 taxa	 (53	 living	 and	

25	 extinct)—	is	 496.3 mm.	 Larger	 than	 the	 370 mm	 estimated	 by	
Vlachos and Rabi (2018),	which	included	59	taxa	(23	living	and	36	
extinct).	Moreover,	our	ancestral	body	size	estimate	for	Testudines	
(345 mm)	 is	 smaller	 than	 that	 estimated	 by	 Sterli	 et	 al.	 (2018; 
359 mm),	 whereas	 our	 Testudinata	 ancestral	 body	 size	 is	 much	
smaller	 (396 mm,	 in	 comparison	 to	 570 mm	 estimated	 by	 Sterli	
et al., 2018).	More	importantly,	however,	some	similar	patterns	are	
observed between our results and those by Sterli et al. (2018), such 

F I G U R E  1 Ancestral	body	sizes	(log10	maximum	dorsal	carapace	length	in	millimeters)	mapped	onto	Testudinata	phylogeny	(“St18”),	with	
(a)	complete	tree	and	(b)	extant-	only	subtree.	Ancestral	body	size	for	different	taxonomic	groups	(c);	small	gray	dots	indicate	all	taxa	within	
that lineage; colored triangles represent the ancestral estimates of stem- groups; circles represent ancestral estimates of the crown groups; 
and	squares	represent	ancestral	estimates	of	the	crown	groups	without	the	fossil	taxa.	Gray	area	indicates	sizes	between	200	and	500 mm.	
The numbers indicate the same groups in a– c.
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6 of 23  |     FARINA et al.

as the body size increase seen in Podocnemididae and the decrease 
seen in Kinosternidae.

3.2  |  Model fitting

The	AICc	 scores	 for	 all	 the	 evolutionary	models	 fitted	 to	 the	 tur-
tle trees and body size data show an overwhelmingly stronger sup-
port	(i.e.,	lower	AICc	values)	for	the	uniform	OU	model,	even	when	
compared to the non- uniform multi- trend models. Consistently, this 
stronger support for the OU model was found when using both 
“Ev19”	 and	 “St18”	 topologies	 (Table 1). These results rule out the 
presence of trend- like processes (either uniform or multi- trend) in 
the body size evolution of Testudinata, at least when the entire tree 
is considered.

3.3  |  Correlation with paleotemperature

No significant correlation was observed between global paleotem-
perature	and	mean,	minimum,	or	maximum	body	size	of	Testudinata	
through time (Table A2).	However,	we	did	find	a	significant,	but	weak	
correlation between body size disparity (= standard deviation of 
body sizes) and paleotemperature (Table 2; Figure 2), with disparity 
increasing at lower temperatures (i.e., higher δ18O	values).	Although	
significant, this correlation is relatively weak when palaeotem-
perature data from Prokoph et al. (2008) are used, but it becomes 
slightly stronger when using data from Zachos et al. (2008), which 
is restricted to the Late Cretaceous- Recent time interval. This may 

suggest that the influence of environmental temperatures on turtle 
body size was stronger during the Cenozoic.

3.4  |  Differences among ecological habitats

Freshwater is the most common habitat occupied by turtles from 
the Jurassic onwards, and this category is therefore the most influ-
ential to the aggregated pattern of turtle body size variation through 
time. No significant changes in either disparity or mean body size of 
freshwater turtles occurred since the Late Cretaceous (Figure 3b,d). 
A	significant	 increase	 in	mean	body	size	 in	 freshwater	 turtles	was	
identified	 between	 the	 Early	 (234 mm)	 and	 the	 Late	 Cretaceous	
(346 mm)	(p-	value = .001146).	In	general,	freshwater	turtles	are	more	
frequently	 represented	 among	 the	 smallest	 body	 sizes,	 and	 only	
rarely among the largest ones (Figure 3b).

Diversity in terrestrial turtles is low until the Paleogene, when the 
first tortoises (Testudinidae) appear in the fossil record (Figure 3a). 
The mean body size of terrestrial turtles is consistently larger than 
that	of	freshwater	species	through	time,	except	during	the	Neogene	
(Figure 3d). From the Triassic to the Late Cretaceous, terrestrial tur-
tles	experienced	a	significant	increase	in	mean	body	size	(from	272	
to	443 mm;	p-	value = .02865).	However,	body	size	disparity	is	low,	as	
expected	from	the	low	number	of	species,	and	the	group	is	mostly	
represented by medium-  or large- bodied forms (Figure 3a).

The first marine turtles appeared at the end of the Jurassic, with 
body sizes like those of other groups (Figure 3c). There is a notewor-
thy (although not significant; p-	value = .3872)	increase	in	the	mean	
body	size	of	marine	turtles	from	the	Jurassic	to	the	Early	Cretaceous,	

TA B L E  1 Results	of	model-	fitting	analyses,	depicting	model	parameters	and	AICc	scores	for	the	models	fitted	to	our	body	size	dataset	
of Testudinata (log10	maximum	dorsal	carapace	length)	and	10	time-	calibrated	trees	for	each	of	the	two	initial	supertree	topologies	(“St18,”	
based on the hypothesis of Sterli et al., 2018,	and	“Ev19,”	based	on	the	hypothesis	of	Evers	et	al.,	2019).

Supertree St18 Ev19

Parameter BM EB OU “Best” trend BM EB OU “Best” trend

AICc 782.09 784.11 96.69 665.15 976.62 978.64 105.28 861.80

σ2 0.0142 0.0142 0.5833 0.0128 0.0185 0.0185 1.7895 0.432

X(0) 474.68 474.68 325.39 411.91 466.66 466.66 324.56 401.61

α – – 0.807 – – – 1.1089 – 

μ1 – – – 0.0023 – – – 0.0024

μ2 – – – −0.7601 – – – – 

μ3 – – – −0.0238 – – – – 

μ4 – – – −0.3237 – – – – 

μ5 – – – −0.7850 – – – – 

Note:	Models:	BM	(Brownian	Motion	model),	EB	(Early	Burst/ACDC	model),	OU	(Ornstein–	Uhlenbeck	model),	and	“best”	trend	(the	model	with	best	
fit	[AICc	scores]	among	the	14	trend-	like	models	fitted	[1	uniform	and	13	non-	uniform	models],	which	in	the	case	of	“St18”	is	represented	by	the	non-	
uniform	trend	model	with	4	“time-	shifts,”	and	in	the	case	of	“Ev19”	is	represented	by	the	uniform	trend	model).	Mean	values	of	model	parameters	are	
shown for the 10 time- calibrated trees: σ2	(sigma	squared,	the	Brownian	variance,	or	rate	parameter),	X(0) (estimated trait value [back- transformed to 
mm] at the root of the tree, also known as Z0; for the OU model, this is the same as the optimum value or θ), α (alpha, the strength of attraction), and 
μ (the trend parameters, describing a uniform directional trend along all branches of the phylogeny, with the number of parameters varying according 
to	the	number	of	shifts).	The	mean	AICc	scores	indicate	overwhelming	support	(i.e.,	lower	AICc	values)	to	the	OU	model	over	the	other	models.
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and a small drop in the Late Cretaceous (Figure 3c,d), but the latter 
interval witnessed the highest variability in body sizes among marine 
turtles in the series (Figure 3c).	After	the	K-	Pg	transition,	the	range	
of body sizes decreased substantially, although the mean remains 
similar.	 After	 that,	 from	 the	Neogene	 to	 the	Quaternary,	 a	 signif-
icant increase in mean body size (p-	value = .003958),	 from	413	 to	
1036 mm,	was	detected	for	marine	turtles	(Figure 3c,d).

We found that ecological habitat is significantly linked to body 
size	in	turtles	using	ANOVA	(Table 3).	However,	when	the	phyloge-
netic structure of the data is taken into account (using phylogenetic 
ANOVA;	Table 3), this association is only significant for the fresh-
water	 and	 terrestrial	 ecological	 categories.	Moreover,	 for	 all	 trees	
tested here, we found a strong phylogenetic signal in body size data 
(λ > 0.856;	p < .001).

4  |  DISCUSSION

4.1  |  Body size patterns and ancestral estimates: 
The effect of including fossils

Despite previous controversies (e.g., Patterson, 1981), it has be-
come increasingly clear that the paleontological record is crucial 
to	 answer	 macroevolutionary	 questions	 (Fritz	 et	 al.,	 2013; Louca 
& Pennell, 2020;	Quental	&	Marshall,	2010). In particular, it is well 
documented that the inclusion of fossils affects the estimation of 
ancestral states and evolutionary rates (e.g., Puttick, 2016; Slater 
et al., 2012).	Nevertheless,	extinct	taxa	are	often	neglected	in	such	
analyses, having so far been included in only two macroevolution 
studies of turtle body size (Sterli et al., 2018; Vlachos & Rabi, 2018).

As	already	noted	by	Jaffe	et	al.	(2011),	examining	the	evolution	
of body size in the fossil record of turtles might provide new insights 
not	revealed	by	previous	analyses.	Based	on	a	sample	of	536	extinct	
taxa,	our	study	was	the	first	comprehensive	attempt	in	that	direction,	
confirming the impact of including fossils on estimates of both diver-
gence times (Figures A1 and A2) and ancestral body sizes (Figure 1 
and Figure A3). The latter has been affected for most lineages as-
sessed here, but to different degrees (Figure 1), with no directional 
effect on the estimates (Figure 1). This differs from the pattern seen 
in mammals, for which ancestors have considerably larger body sizes 
when estimated using fossils (e.g., Finarelli & Flynn, 2006; Finarelli & 
Goswami, 2013).	For	mammals,	these	results	were	explained	by	the	
widespread occurrence of directional evolution toward large body 
sizes	from	small	ancestors	(Alroy,	1999; Smith et al., 2010), a pattern 
not observed in turtles (see below).

4.2  |  Cope's rule and directional trends of body 
size evolution

We found no evidence for directional patterns of body size evo-
lution in turtles (Table 1), given that none of our trend- like mod-
els (either the uniform trend or the multi- trend models) received TA
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8 of 23  |     FARINA et al.

more support than the uniform OU model. This result is consistent 
with	previous	investigation	by	Moen	(2006), which also found no 
support	for	Cope's	rule	when	analyzing	extant	cryptodires	 (even	
though	directional	evolution	may	be	difficult	to	detect	on	extant-	
only datasets; Finarelli & Flynn, 2006; Schnitzler et al., 2017; 
Slater et al., 2012). Therefore, our results provide no support 
for	the	hypothesis	that	Cope's	rule	explain	the	evolution	of	large	
body sizes in Testudinata. They also add to the growing evidence 
that directional body size evolution is rare among vertebrates 
(Benson et al., 2018; Godoy et al., 2019;	 Huttenlocker,	 2014; 
Sookias et al., 2012),	with	 the	exception	of	mammals	and	ptero-
saurs	(Alroy,	1998; Benson et al., 2014), once again challenging the 
generality of Cope's rule.

4.3  |  Influence of environmental temperature on 
turtle body size evolution

The	relationship	between	abiotic	factors	and	body	size	has	been	ex-
tensively studied, with distinct vertebrate groups being differently 
affected by them, especially when it comes to comparing endother-
mic	and	ectothermic	organisms	 (Angielczyk	et	al.,	2015;	Angilletta	
et al., 2004;	Ashton	&	Feldman,	2003;	Mousseau,	1997; Partridge 
& Coyne, 1997;	van	der	Have	&	de	Jong,	1996; Van Voorhies, 1996). 
Large- scale trends such as Bergmann's rule (i.e., the tendency of 

having larger body sizes at higher latitudes within a species) may play 
an important role for within- species variation of body size in endo-
therms	 (Ashton	 et	 al.,	2000; James, 1970; Zink & Remsen, 1986), 
and	may	explain	patterns	of	maximum	size	during	mammal	 evolu-
tion (Saarinen et al., 2014). Yet, results for ectothermic reptiles are 
less	 consistent	 (Angielczyk	et	 al.,	2015;	Ashton	&	Feldman,	2003; 
Mousseau,	1997).

We evaluated the correlation between turtle body size dis-
tributions and paleotemperature variation through time. In gen-
eral, no significant influence of temperature on mean, minimum, 
or	maximum	body	size	 in	the	group	was	found	(Table	A2). Similar 
results were reported for crocodylomorphs, for which no signifi-
cant correlation between paleotemperature and body size (mean, 
maximum,	and	minimum	values)	was	found	when	the	entire	group	
is analyzed, even though a strong association between both vari-
ables is observed when only the crown group is considered (Godoy 
et al., 2019). Therefore, although our results indicate no overall in-
fluence of paleotemperature on the through- time distribution of 
turtle	mean,	maximum,	 and	minimum	body	 sizes,	we	 cannot	 rule	
out an influence of environmental temperatures at smaller tempo-
ral and phylogenetic scales. Indeed, environmental temperature has 
been	a	commonly	proposed	explanation	for	body	size	variation	in	
different turtle clades and species, particularly affecting disparity, 
diversity, or distribution of less inclusive groups (e.g., Böhme, 2003; 
Ferreira et al., 2018; Georgalis & Kear, 2013; Vitek, 2012).

F I G U R E  2 (a)	Through-	time	patterns	of	Testudinata	body	size	disparity	(standard	deviation	of	log10	maximum	dorsal	carapace	length	
in millimeters) and paleotemperature (δ18O isotopic data from Zachos et al., 2008) during the last ~70 Ma.	Error	bars	were	calculated	by	
bootstrapping the disparity data 500 times. δ18O	is	used	as	proxy	for	paleotemperature	and	is	inversely	proportional	to	temperature.	(b)	
Linear regression (OLS) between turtle body size disparity and δ18O data (regression results shown in Table 2).
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F I G U R E  3 Temporal	distribution	of	body	sizes	(log10	maximum	dorsal	carapace	length	in	millimeters)	in	turtles	for	different	ecological	
habitats.	Gray	dots	represent	all	taxa,	whereas	colored	dots	represent	taxa	subdivided	into	three	ecological	categories.	(a)	terrestrial	taxa	
(red	dots);	(b)	freshwater	taxa	(light	green	dots);	(c)	and	marine	taxa	(light	blue	dots).	Horizontal	gray	segments	represent	the	range	of	
occurrence	of	each	taxon;	(d)	Boxplot	showing	body	size	of	different	ecological	categories	divided	into	time	intervals.	Silhouettes	adapted	
from Jaffe et al. (2011).
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10 of 23  |     FARINA et al.

We did find a significant correlation between paleotempera-
ture and turtle body size disparity (= standard deviation) during the 
Cenozoic, with periods of higher disparity associated with lower 
temperatures (or higher δ18O values; Figure 2). We suggest three 
potential	 explanations	 for	 this	 seemingly	 counterintuitive	 result.	
First, low temperatures might have restricted niche availability for 
turtles	and,	consequently,	driven	body	size	specialization—	toward	
larger or smaller body sizes— to avoid competition, as seen in some 
extant	lineages	(Cunha	et	al.,	2020; Pritchard, 2001). Conversely, 
colder and dryer environments could have increased availability 
of coastal habitats (by sea level drops), which has been associated 
with higher diversification rates in turtles (Thomson et al., 2021). 
Higher	species	richness	might	have	also	led	to	higher	disparity	lev-
els in body size. Finally, the significant correlation might be an arti-
fact from the coincidental drop in temperature over the Cenozoic 
and	a	continuous	expansion	in	body	size	in	turtles.	Disparity	con-
stantly increases since the origin of the group, punctuated only by 
small drops (e.g., in the Oligocene and present time bins, Figure 2). 
A	 slow,	 steady	 disparity	 increase	 has	 been	 also	 noted	 in	 cranial	
morphology by Foth and Joyce (2016), particularly during the 
Mesozoic	in	different	lineages.	That	would	also	explain	the	stron-
ger correlation with the Zachos et al. (2008) curve— restricted 
to Cenozoic δ18O values— in relation to that using Prokoph 
et al. (2008), which includes the period of increasing temperatures 
in	the	Mesozoic.	In	any	case,	it	seems	that	environmental	tempera-
ture did not play a major role in determining large- scale patterns 
of Testudinata body size variation through time, at least not when 
considering the entire group.

4.4  |  Body size evolution and ecological habitats

Our	 ANOVA	 results	 (Table 3) indicate a significant association 
between habitat preference and body size in turtles. This is seen 
in	 the	 phylogenetic	ANOVA,	 specifically	 for	 freshwater	 and	 ter-
restrial habitats, indicating that evolutionary shifts of habi-
tat correlate with directional evolutionary shifts of body size. 
Accordingly,	 through-	time	body	size	patterns	 for	distinct	habitat	
categories (Figure 3) can help understanding patterns observed in 
different turtle subgroups, which emphasizes the importance of 

independently	examining	each	of	the	three	main	turtle	ecologies:	
freshwater, terrestrial, and marine.

Since the Jurassic, most turtles have had freshwater ecologies 
(Figure 3b; Joyce & Gauthier, 2004), with these turtles keeping 
a fairly homogeneous body size disparity (= standard deviation) 
through time (Figure 3b). Their wide and constant disparity of body 
sizes	might	 be	 explained	by	distinct	 evolutionary	 scenarios	within	
such habitats (Jaffe et al., 2011), with different species, closely re-
lated or not, inhabiting several disparate freshwater environments 
(Bonin et al., 2006). For instance, different pleurodiran and cryp-
todiran	lineages	acquired	resistance	to	estuarine	or	brackish	water	
(Agha	et	al.,	2018; Bower et al., 2016).	Also,	closely	related	taxa	occu-
pying the same areas are known to avoid competition through body 
size	divergence,	such	as	extant	podocnemidids	(Cunha	et	al.,	2020) 
and trionychids (Pritchard, 2001).

Terrestrial and marine turtles, on the other hand, are repre-
sented by fewer lineages, with more restrict evolutionary histo-
ries. The earliest turtles were terrestrial, ranging from medium-  to 
large-	sized	 during	 the	 Mesozoic	 (Figure 3a– d).	 Meiolaniformes	 is	
the only of these stem- lineage groups to survive until recently (until 
the	Holocene;	Sterli,	2015), displaying large to gigantic body sizes, 
especially	 after	 the	 Mesozoic.	 Testudinids—	the	 only	 extant	 lin-
eage of terrestrial turtles— appeared in the fossil record during the 
Paleogene and remained relatively small until at least the end of that 
period (Figure 3c).	The	Eocene–	Oligocene	witnessed	a	peak	of	di-
versity, related to the origin of crown- group Testudinidae (Lourenço 
et al., 2012; Vlachos & Rabi, 2018), after which the group spread 
from	Eurasia	to	most	of	the	world.	Therefore,	the	recent	high	varia-
tion	in	body	size	within	tortoises	might	be	also	related	to	the	expan-
sion of occupied habitats (as in freshwater turtles), also associated 
with	 specific	 diversification	 and	 extinction	 dynamics	 within	 the	
group (e.g., Joos et al., 2022).

Extant	marine	turtles	(Chelonioidea)	exhibit	low	disparity,	but	re-
markably large body sizes (Figure 3b), which might be related to mor-
phological adaptations to a pelagic lifestyle, given that other groups 
of sea turtles (e.g., Thalassochelydia and Bothremydidae) are not as 
strongly associated with larger sizes and were probably not pelagic. 
The	 large	 size	 of	marine	 turtles	might	 also	 be	 explained	by	 either	
physiological	constraints	(e.g.,	thermoregulation;	Mrosovsky,	1980) 
or the need for higher dispersal abilities associated with migration 

TA B L E  3 Results	of	ANOVA	and	PhyloANOVA	exploring	the	relationship	between	Testudinata	body	size	(log10	maximum	dorsal	carapace	
length in millimeters) and different ecological categories: terrestrial (n = 145),	freshwater	(n = 563),	and	marine	(n = 87).

ANOVA results df SS MS F- value p- Value

ANOVA 2 4.77 2.3868 36.55 <.0001*

PhyloANOVA 2 0.0323 0.0161295 1.8106 .109

Pairwise comparison (p- values) Marine– fresh. Terrestrial– fresh. Terrestrial– Marine

ANOVA <.0001* <.0001* .502

PhyloANOVA .801 .04* .176

Note: Pairwise comparisons between ecological categories also shown.
Abbreviations:	df,	degrees	of	freedom;	MS,	mean	squares;	SS,	sum	of	squares.
*Significant	at	alpha = .05.
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(Jaffe et al., 2011). It has been previously proposed that thermoregu-
lation and other physiological aspects (e.g., lung capacity while diving) 
play	an	important	role	in	determining	the	larger	body	sizes	of	aquatic	
mammals and reptiles (Benson et al., 2012; Davis, 2014; Gearty 
et al., 2018; Gearty & Payne, 2020; Gutarra et al., 2022; Pyenson & 
Vermeij, 2016; Williams, 2001), by posing a minimum body size limit 
on	these	species.	However,	in	the	case	of	marine	turtles,	the	fossil	re-
cord	shows	that	smaller	species	also	existed	in	the	past	(Figure 3c,d), 
with Santanachelys gaffneyi	 from	 the	Early	Cretaceous	of	Brazil	 as	
one	of	the	oldest	and	smallest	sea	turtles	(200 mm;	Hirayama,	1998). 
Therefore, in the case of Testudinata, perhaps the lower body size 
limit imposed by physiological constraints was not as strict as those 
inferred	for	other	secondarily	aquatic	tetrapods	(e.g.,	mammals).	On	
the other hand, the shell and the necessity to lay eggs on land possi-
bly	pose	constraints	on	the	maximum	body	sizes	achieved	by	marine	
turtles (Benson et al., 2012), which are, in general, smaller than other 
Mesozoic	marine	reptiles	and	extant	cetaceans	(Benson	et	al.,	2012; 
Smith & Lyons, 2011).

Finally, intrinsic factors might also influence body size evolution 
in turtles. Sterli et al. (2018),	for	example,	suggested	that	a	reduction	
in	size	in	Mesochelydia	(the	clade	including	all	post-	Triassic	turtles)—	
which is confirmed by our ancestral state estimates (Figure 1)— could 
be	explained	by	paedomorphic	processes,	which	are	also	evidenced	
by other morphological traits. The shell might also constrain the 
maximum	body	size	of	turtles	inhabiting	terrestrial	and	semiaquatic	
environments	 (Golubović	 et	 al.,	2017; Lyson et al., 2014). It could 
hamper turtles from attaining sizes as large as giant mammals and 
dinosaurs due to a different relation between weight and body size. 
Moreover,	minimum	body	sizes	in	turtles	are	overall	larger	than	that	
of	 the	 smallest	 lissamphibians,	 squamates,	 mammals,	 and	 birds.	
Endothermy	could	explain	 the	 smaller	 sizes	of	mammals	and	birds	
(Lovegrove, 2017),	but	not	of	 lissamphibians	or	squamates.	Hence,	
it is possible that the shell also imposes a lower body size limit to 
testudinatans.

5  |  CONCLUSIONS

Turtle body sizes showed low disparity early in their evolutionary his-
tory.	They	reached	substantial	disparity	only	in	the	Early	Cretaceous,	
concomitantly	with	the	lowest	mean	body	sizes.	Habitat	preference	
is only weakly linked to body size variation in turtles. Nevertheless, 
ecological	 transitions	provide	 a	 partial	 explanation	 for	 differences	
in the body size distribution of turtle subgroups. Freshwater turtles 
show a constant range of body sizes and higher disparity through 
time, which might be related to the ecological diversity associated 
with	 these	habitats.	Body	size	 in	 terrestrial	 turtles	 is	explained	by	
their ecological diversity, in addition to the higher dispersal ability in 
giant species. In sea turtles, upper and lower body size limits seem 
to be associated with physiological (e.g., thermoregulation) and mor-
phological (e.g., the shell) constraints, as well as with adaptations to 
the pelagic lifestyle during the Quaternary.

We did not find support for a general trend- like process lead-
ing	to	larger	body	sizes,	discarding	Cope's	rule	as	an	explanation	for	
body	size	evolution	in	turtles.	Also,	we	did	not	find	a	significant	influ-
ence	of	paleotemperature	on	mean,	maximum,	and	minimum	body	
size.	Although	we	found	a	significant,	moderate	correlation	between	
temperature and body size disparity through time, this association 
might be an artifact caused by a join constant increasing of disparity 
and continuous drop in temperatures during the Cenozoic.
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APPENDIX 1

F I G U R E  A 1 The	“Ev19”	time-	calibrated	supertree,	represented	by	the	50%	majority	rule	tree.	Blue	bars	represent	the	95%	highest	
posterior	density	(HPD)	age	ranges	for	each	node.
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    |  19 of 23FARINA et al.

F I G U R E  A 2 The	“St18”	time-	calibrated	supertree,	represented	by	the	50%	majority	rule	tree.	Blue	bars	represent	the	95%	highest	
posterior	density	(HPD)	age	ranges	for	each	node.
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F I G U R E  A 3 Ancestral	body	sizes	(log10	maximum	dorsal	carapace	length	in	millimeters)	mapped	onto	Ev19	supertree,	with	(a)	complete	
tree	and	(b)	extant-	only	subtree.	Ancestral	body	size	for	different	taxonomic	groups	(c);	small	gray	dots	indicate	all	taxa	within	that	lineage;	
colored	triangles	represent	the	ancestral	estimates	of	stem-	groups;	circles	represent	ancestral	estimates	of	the	crown	groups;	and	squares	
represent	ancestral	estimates	of	the	crown	groups	without	the	fossil	taxa.	Gray	area	indicates	sizes	between	200	and	500 mm.	The	numbers	
indicate the same groups in a– c.
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TA B L E  A 1 Sources	of	phylogenetic	information	for	supertrees	construction.

Group References

Testudinata Evers	et	al.	(2019), Sterli et al. (2018)
Obs 1: Joyce (2017):	used	to	include	taxa	that	were	not	sampled	by	the	above	topologies

Meiolaniformes Sterli (2015), Sterli et al. (2018)
Obs	1:	In	“Ev19”:	the	position	of	Chubutemys and Kallokibotion	was	defined	according	to	Evers	et	al.	(2019)

Helochelydridae Joyce (2017)
Obs 1: Aragochersis:	according	to	Pérez-	Garcia,	Espílez,	et	al.	(2020)

Sichuanchelyidae Joyce (2017)

Compsemydidae Joyce	and	Anquetin	(2019)
Obs 1: Peltochelys duchastelii: according to Joyce and Rollot (2020)

Paracryptodira Joyce and Rollot (2020)
Obs 1: Position of Dinochelys, Compsemydidae, Uluops e Baenoidea

Baenidae Joyce and Lyson (2015)
Obs	1:	Eubaeninae	(Lyson	et	al., 2019) + “Baena” escavada	(Joyce	&	Lyson, 2015)

Pleurosternidae Joyce and Rollot (2020)
Siamochelys peninsularis: according to Sterli et al. (2018).
Obs 1: Sister group of Paracryptodira

Xinjiangchelyidae Rabi et al. (2013)	Obs	1:	Xinjianchelys	(less	inclusive	clade)	according	to	Evers	et	al.	(2019)
Sampled	made	by	Evers	and	Benson	(2018)	and	Evers	et	al.	(2019) include Xinjianchelys radiplicatoides, Xinjianchelys 

wusu, Annemys IVPP V18106, Annemys levensis, and Annemys latiens. A. latiens and A. levensis are included in Rabi 
et al. (2013) as Xinjianchelys latiens e Xinjianchelys levensis,	but	other	Xinjianchelys	in	Evers	et	al.	(2019) are not. 
Because Xinjianchelys is monophyletic in Rabi et al. (2013) (if Larachelus and Brodiechelys are included), we assume 
the	Evers	et	al.'s	(2019)	topology	includes	only	taxa	from	this	clade	(i.e.,	clade	that	includes	Xinjianchelys, Larachelus e 
Brodiechelys, but not Protoxinjiangchelys or Tienfuchelys),	thus	the	relationship	between	other	xinjiangchelidis	follows	
Rabi et al. (2013)

Sinemydidae Evers	et	al.	(2019), Shao et al. (2018)
Obs 1: Hoyasemys jimenezi:	according	to	Pérez-	García,	Fuent,	et	al.	(2012)
Obs 2: Galvechelone lopezmartinezae:	according	to	Pérez-	Garcia	and	Murelaga	(2012)

Angolachelonia Evers	et	al.	(2019)

Thelassochelydia Anquetin	et	al.	(2017)
Obs 1: In “St18,” Santanachelys	is	included	within	Eurysternidae

Sandownidae Evers	et	al.	(2019)

Platychelyidae López- Conde et al. (2017)

Dortokidae Cadena and Joyce (2015)

Pan- Chelidae Holley	et	al.	(2020), Pereira et al. (2017)
Obs 1: Linderochelys and Salamanchelys:	according	to	Hermanson	et	al.	(2020)
Obs 2: Yaminuechelys sulcipeculiaris: according to Oriozabala et al. (2020)

Pelomedusidae Pereira et al. (2017), Petzold et al. (2014)

Pan- Podocnemididae Hermanson	et	al.	(2020)

Adocidae Syromyatnikova and Danilov (2013)
Obs 1: Adocus inexpectatus: according to Danilov et al. (2013)

Nanhsiungchelyidae Tong and Li (2019)
Obs 1: Basilemys gaffney, Basilemys morriensis, and Zangerlia testudinomorpha:	Mallon	and	Brinkman	(2018)

Pan- Carettochelys Havlik	et	al.	(2014)

Trionychia Pereira et al. (2017), Brinkman et al. (2017; implied weighting tree); other added according to Georgalis and Joyce (2017) 
and Vitek and Joyce (2015)

Obs 1: Plastomenidae according to Joyce et al. (2018)
Obs 2: Axestemys according to Vitek and Joyce (2015)
Obs 3: Apalone amorense: according to Valdes et al. (2017)
Obs 4: Aspideretoides foveatus and Gobiapalone orlovi: according to Brinkman et al. (2017)

(Continues)
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Group References

Pan- Testudinoidea Pereira et al. (2017), Vlachos (2018) (general topology)
Pan-	Emydidae:	Pereira	et	al.	(2017), Vlachos (2018)
Obs 1: Polytomy within Pseudemys, Graptemys and Trachemys
Pan- Geoemydidae: Pereira et al. (2017), Vlachos (2018)
Obs 2: Banhxeochelys and Guangdongemys according to Garbin et al. (2019)
Obs 3: Hardella siamensis: according to Claude et al. (2007)
Obs 4: Pangshura tatrotia: according to Joyce and Lyson (2010)
Pan- Testudinidae: Pereira et al. (2017), Vlachos (2018), and Vlachos and Rabi (2018)
Obs	5:	Extant	taxa	were	included	following	Pereira	et	al.	(2017);	extinct	taxa	were	positioned	according	to	Vlachos	and	

Rabi (2018) and Vlachos (2018)
Obs 6: Gopherus: Vlachos (2018)
Obs 7: Polytomy within Chelonoidis
Geochelona: Pereira et al. (2017),	Pérez-	García,	Vlachos,	et	al.	(2020), and Vlachos and Rabi (2018)
Pan- Testudona: Vlachos and Tsoukala (2016)
Obs 8: Impregnochelys and Gigantochersina:	according	to	Pérez-	García	et	al.	(2020)

Pan- Chelydridae Joyce (2016)

Pan- Kinosternoidea Joyce	and	Bourque	(2016)
Obs 1: Kinosternon:	polytomy	(we	added	taxa	from	Pereira	et	al.'s,	2017 topology)
Obs 2: Yelmochelys rosarioae: according to Brinkman et al. (2016)
Obs 3: Lutemys warren: according to Lyson et al. (2019)
Obs	4:	Kinosterninae:	Joyce	and	Bourque	(2016)

Pan- Chelonioidea Evers	et	al.	(2019), Gentry et al. (2019)
Obs 1: Mexichelys, Argillochelys antiqua, and Procolpochelys: according to Zvonok and Danilov (2017)
Obs 2: Prionochelys, Euclastes wielandi**, Asmodochelys: according to Gentry et al. (2019)
Obs 3: Osonachelus decorata: according to Lapparent de Broin et al. (2014)
Obs 4: Allopleuron qazaqstanense and Allopleuron lipsiensis according to Karl et al. (2012)
Obs 5: Rhinochelys amaberti according to Scavezzoni and Fischer (2018)
Obs	6:	Ctenochelyidae:	Evers	et	al.	(2019)
Obs 7: Santanachelys: Protostegidae, according to Gentry et al. (2019),	Evers	et	al.	(2019), and Scavezzoni and Fisher 

(2018), closely related to Solnhofia
(Thalassochelyidae	according	to	Anquetin	et	al.,	2017;	Evers	et	al.,	2019), Protostegidae become more basal, within 

Thalassochelyidae
Obs	8:	The	position	of	Cheloniidae	and	Ctenochelyidae	according	to	Evers	et	al.	(2019)
Obs 9: Carolinochelys and Trachyaspis closely related to Cheloniidae is supported by Weems and Brown (2017) and 

Zvonok and Danilov (2017)
Obs 10: Pacifichelys, Erquelinnesia, Tasbacka spp., “Argillochelys” africana and Euclastes is supported partially by Weems 

and Brown (2017) and based on Zvonok and Danilov (2017)
Obs	11:	Lophochelyinae	as	sister	group	of	those	groups,	excluding	Toxochelys, and Mexichelys is supported by Parham 

and Pyenson (2010), Weems and Brown (2017), and Zvonok and Danilov (2017)
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