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Abstract:

loaded from online community-maintained databases, are a

Large datasets of fossil occurrences, often down-

vital resource for understanding broad-scale evolutionary
patterns, such as how biodiversity has changed through time
and space. Such datasets, however, are not infallible and
must be ‘cleaned’ of inaccurate, incomplete, or duplicate
data prior to analysis. Researchers must decide upon the
extent, feasibility, and value of data cleaning steps to per-
form, but while guides are available for working with neon-
tological occurrences, there is currently no clear procedure
for palaeobiological data despite its unique attributes. Here,
we outline ten rules that aim to aid the process of cleaning

fossil occurrence data for downstream analysis. These rules
cover the major steps involved in processing data prior to
analysis, including project setup, data exploration and clean-
ing, and finalizing and reporting work. We provide accom-
panying examples and a vignette covering the entire data
cleaning process to demonstrate the application of each rule.
We believe that these rules will serve as a useful guideline to
support data cleaning and foster new standards for the
palaeobiological community.

Key words: palaeontology, fossil, biodiversity, reproducibil-
ity, data cleaning.

LARGE-sCALE fossil occurrence datasets have revolutio-
nized our understanding of the evolution of biodiversity
on Earth (e.g. Alroy et al. 2008; Alroy 2010, Close
et al. 2020a, 2020b) and enabled a diverse range of stu-
dies across palaeobiology, palacoecology and conservation
(e.g. Powell ef al. 2015; Pimiento ef al. 2017; Dean
et al. 2019; Jones et al. 2019; Allen et al. 2020; Boag
et al. 2021; Mathes et al. 2021; Chiarenza et al. 2023).
Such datasets provide information about the temporal
and spatial distribution of organisms through geological
time, along with associated stratigraphic, environmental,
and biological data (e.g. preservation, palaeoenvironmen-
tal information, trait data). Over the last 30 years,
palaeobiology has seen the introduction of large-scale col-
laborative online databases (e.g. Neptune (Lazarus 1994),
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the Paleobiology Database (Uhen et al. 2023), Neotoma
(Williams et al. 2018)) of fossil occurrences where data
are entered (or uploaded) by researchers from around the
world with a range of goals, parameters, and collection
methods. Using such databases is now commonplace
within the field, with the Paleobiology Database (PBDB)
and Neotoma both reporting over 500 associated official
publications each at time of writing (March 2025). The
scale of these databases has moved palaeontology into
the age of ‘big data’ (Allmon et al. 2018), allowing for the
interrogation of Phanerozoic scale patterns that would
have been impossible to implement previously.

Despite their value, the use of large-scale databases can
be hindered by data quality issues such as variable data
curation efforts (e.g. resolving and updating taxonomic
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FIG. 1. Graphic summary of the proposed ten rules and steps to follow when cleaning occurrence data for palaeobiological analysis.
The rules are grouped within their respective theme: project setup (Rules 1-3); data exploration and cleaning (Rules 4-8); and report-

ing and archiving (Rules 9 and 10).

opinions, updating geochronological ages), inconsistencies
during data entry, general error from those inputting
data, ambiguity in the original published documents, and
lack of familiarity with the underlying data. Resolving
these data issues at the source is challenging; such data-
bases contain millions of records but are only maintained
by a small group of volunteers who lack the necessary
resources (e.g. time, funding, or relevant expertise) to
identify and resolve incorrect records at pace. These issues
can be non-random and consequently lead to bias in
downstream analysis (Panter et al. 2020). Unfortunately,
issues related to data quality are commonplace within all
large datasets (Cai & Zhu 2015; Isaac & Pocock 2015),
and palaeobiological resources are no exception. A recent
estimate based on flowering plants (c. 19 000 records)
from the PBDB suggested that at least 6% of records
could be viewed as potentially ‘problematic’ (Zizka
et al. 2019), while another estimate based on fossil occur-
rences from the Hell Creek Formation suggested an error
rate up to 92.6% in taxonomic data (Schroeder
et al. 2022). Cleaning occurrence data is therefore critical
to ensure accurate, reliable, and up-to-date data analysis.

However, it is by no means a trivial task, particularly for
complex datasets where values may change over time (e.g.
due to updates in taxonomy or nomenclature).

Here, we offer ten simple rules as guidance to follow
when cleaning fossil occurrence data in preparation for
palaeobiological analysis (Fig. 1). Many of these guide-
lines are equally applicable for neontological occurrence
data and have previously been advocated for by ecologists
(e.g. Chapman 2005; Zizka et al. 2019; Panter et al. 2020;
Ribeiro et al. 2022). We expand upon these guidelines
and present them within a specifically palaeobiological
context. The rules are structured broadly in chronological
order to aid in carrying out an individual research pro-
ject, covering project setup (Rules 1-3), data exploration
and cleaning (Rules 4-8), and finalizing and reporting
work (Rules 9 and 10). For each rule, we provide gui-
dance on the value of its implementation and, where
appropriate, highlight useful resources. Additionally, we
demonstrate how each rule can be put into practice
within the in-text boxes and in an accompanying vignette
on crocodylian biogeography, available in Appendix S1
and at https://tenrules.palacoverse.org/. We hope this
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guidance acts as a helpful checklist for researchers to fol-
low when cleaning their data, and highlights the extensive
skill and knowledge often required to prepare datasets in
preparation for palaeobiological analysis. While the rules
presented here aim to be of use to the broader commu-
nity, our intention is to specifically support researchers
getting started with analyses using fossil occurrence data.
As such, we assume no former knowledge on the subject,
and start by defining fossil occurrence data and data
cleaning.

WHAT IS FOSSIL OCCURRENCE DATA?

Fossil occurrence data comprise records of the presence of
a particular taxon at a unique location in space and geolo-
gical time. This is distinct from specimen-level data, which
provides information about a specific fossil specimen. For
example, if three specimens of Tyrannosaurus rex are pre-
sent in the same geological bed at a single location, an
occurrence-level dataset would record just one occurrence
of T. rex. This is also distinct from (relative) abundance
data which represents the actual number (or proportion)
of individuals in a given area. Typically, occurrence data
will include information about the observed organisms
such as detailed taxonomy (e.g. scientific name and taxo-
nomic affiliation), location (e.g. modern and/or palaeo-
geographic coordinates), geological context (e.g. bed,
member, formation) and age (e.g. age, epoch, period, era,

eon), and may also contain various associated metadata
(e.g. references). From a user perspective, fossil occurrence
data are most frequently organized as a single wide-format
data table (Box 1, below) where each column represents a
unique field and each row represents a unique occurrence
record. From a user-perspective this is a common struc-
ture, but fossil occurrence data are regularly hosted in
online databases as a set of relational data tables, linked
through unique identifiers.

Fossil occurrence data can be sourced from a variety of
online databases such as the PBDB (https://paleobiodb.
org/#/) (Uhen et al. 2023), Neotoma (https://www.
neotomadb.org/) (Williams et al. 2018), Triton (Fenton
et al. 2021), Global Biodiversity Information Facility
(https://www.gbif.org/), and the Geobiodiversity Database
(http://geobiodiversity.com) (Fan et al. 2013). An exhaus-
tive list of other data sources can be found in Dillon
et al. (2023, suppl. table 1).

WHAT IS AND IS NOT DATA
CLEANING?

Data cleaning is the process of fixing or removing incor-
rect, duplicate, or incomplete data present within a data-
set (Chapman 2005). This process typically involves
checking that essential fields like taxonomic names, loca-
tion, and stratigraphic information contain accurate, con-
sistent, and complete information. Common steps for

BOX 1. Choose the right data for your question

Robin is starting a project looking at the palaeodiversity of crocodiles through time, assessing their biogeographic patterns
during the Palaeogene. They decide to download the necessary data from the PBDB, where Crocodylia are reasonably well
represented for this time interval and where relevant information (e.g. taxonomic, geographic, age) is available. When
downloading these data, Robin sets the time interval as ‘Paleogene’ and the taxa to include as ‘Crocodylia’, also making sure
to only include body fossils in the download and therefore avoiding the potential for ichnotaxa (morphologically-distinct
trace fossils) or ootaxa (morphologically-distinct egg fossils) in the dataset as these often carry large uncertainty in
taxonomic affiliation. As they are interested in biogeographic patterns, Robin also makes sure to include information
related to geographic coordinates, such as both modern and palaeo-latitude and longitude. They also want to assess the
association between Crocodylia occurrences and the number of Crocodylia-bearing geologic formations through time, so
they make sure that geological information is included within the download.

Example occurrence dataframe of ‘Crocodylia’ fossil occurrences from the PBDB (https://paleobiodb.org/) demonstrating
the structure of a wide-format dataframe.

occurrence_no collection_no accepted_name max_ma min_ma Ing lat

40163 3113 Crocodylia 59.2 56 —74.68 39.97
40167 3113 Gavialoidea 59.2 56 —74.68 39.97
40168 3113 Gavialoidea 59.2 56 —74.68 39.97
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TABLE 1. A list of terms used in this article and their respective definitions.

Term Definition

Data cleaning

The process of fixing or removing incorrect, duplicate, or incomplete data present within a dataset

(e.g. incomplete locality information, misspellings)

Data filtering

The process of removing data present within a dataset that is beyond the scope of the study

(e.g. taxonomically, geographically, temporally)

Data imputation
values
Data preparation
Duplicate data
Data outlier
Inconsistent data

Non-unique data records

The process of replacing missing values within a dataset with modelled values based on the existing observed
The process of preparing and transforming raw data so it is suitable for analysis and processing

A data record value that notably deviates from other comparable data records
Non-uniform or non-standardized data record values

Metadata Structured information that describes, explains, locates, or makes it easier to retrieve, use, or manage data
Raw data Data in its original unaltered state as collected from its source
Reproducibility The ability to obtain consistent results using the same data and analyses

Reusability
Transformed data

The ability to reapply data or code for purposes other than their original purpose
Data that has been altered or manipulated in some way from its original state

palaeobiological datasets may involve correcting spelling
errors in taxonomic names, updating ages of geological
formations, or investigating and resolving occurrences
suspected to contain inaccurate information. Within our
definition of data cleaning, we exclude the use of filtering
to remove data outside the scope of the study, whether
that be temporally, spatially, environmentally, taxonomi-
cally, or by other criteria (see Table 1). For instance, if
investigating the evolution of Phanerozoic terrestrial bio-
diversity, removing marine organisms from the occur-
rence dataset would constitute data filtering. However, if
a fossil occurrence or taxon had been mistakenly coded as
a marine organism (e.g. with crocodylomorphs) when it
was in fact terrestrial, fixing this issue would constitute
data cleaning (e.g. Mannion et al. 2015, 2019).

RULE 1: CHOOSE THE RIGHT DATA
FOR YOUR QUESTION

Selecting the right data is a crucial first step in addressing
your research question (Box 1). Failure to do so can lead
to wasted effort in data cleaning, biased results, or mis-
leading conclusions. The data required to address a
research question depends on the scope of the study,
whether it involves taxonomic diversity, biogeographic
patterns, evolutionary rates, ecological reconstructions, or
some other thematic area. Before gathering data, whether
through fieldwork or using existing databases, researchers
must determine what fields, resolution (e.g. taxonomic
rank, chronostratigraphic level), and coverage (e.g. tem-
poral, spatial, environmental) are required for their speci-
fic inquiry. During this process, researchers should
carefully consider their tolerance for errors and whether
flexibility related to data resolution and coverage (e.g.

taxonomic, temporal, or geographic sampling) may be
useful, or introduce unnecessary biases and/or analytical
noise. For example, are the same macroevolutionary or
ecological trends still identifiable at coarser taxonomic
levels or temporal resolutions (e.g. Sepkoski 1997; Pan-
dolfi 2001; Hendricks et al. 2014)? Can macroecological
trends be reliably reconstructed given the available spatial
sampling (e.g. Darroch et al. 2020; Jones et al. 2021;
Maidment et al. 2021)? Is sufficient granularity available
to determine which environments favour high diversifica-
tion (e.g. Kiessling et al. 2010)? While data-specific ques-
tions are important, defining a research question can be
an iterative process and can be refined to meet what data
is available, rather than abandoning a project altogether.
This refinement may be necessary to ensure analyses are
both robust and relevant, as well as to reduce bias and
increase the reliability of palaeobiological interpretations.
Many steps exist in identifying the right data to address
a research question, and often vary between research
questions. Nevertheless, some are shared across palaeo-
biological studies. The initial steps for data selection often
include defining the target group (be that taxonomic,
geographical, temporal, etc.) and the level of data resolu-
tion required. Including data at inappropriate resolutions
can either dilute meaningful signals (if too broad) or
introduce unnecessary noise (if too fine-grained), particu-
larly if taxonomic or temporal assignments are uncertain
or in flux (e.g. Paterson 2020). For example, studies on
species-specific ecological interactions or evolutionary
trends require species-level data resolution (e.g. Kempf
et al. 2020; Raja et al. 2021; Godbold et al. 2025),
whereas broader macroevolutionary patterns may be
addressed at the genus or family level (e.g. Sahney & Ben-
ton 2008; Kiessling & Kocsis 2015; Mannion et al. 2015;
Dimitrijevi¢ et al. 2024; Drage & Pates 2024). This can be
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dependent on the taxonomic group of choice; for
instance, there may be insufficient occurrences identified
at the species level to enable analysis at this resolution,
such as commonly the case with fossil pollen (e.g. Goring
et al. 2013). When considering taxonomic resolution,
researchers might also assess whether their study will ben-
efit from incorporating multiple taxonomic groups. While
focusing on a single clade may allow for taxon-specific
trends to be identified, integrating data from multiple
lineages can provide insights into ecosystem-wide
responses and provide higher data coverage (e.g. Song
et al. 2020). Nevertheless, increasing taxonomic breadth
should be done deliberately, as different groups may have
distinct preservation biases or ecological niches, compli-
cating direct comparisons (e.g. Fernandez-Jalvo et al. 2011;
Kiessling & Kocsis 20155 Dean et al. 2019; Shaw
et al. 2020, 2021). Studies conducted at wide taxonomic
breadth may therefore provide a large-scale picture of the
clade included, but risk averaging across the nuanced
trends of the individual subclades within it.

Temporal resolution is equally important as taxonomic
resolution. Overly broad temporal bins can obscure evo-
lutionary or ecological signals, while excessively fine bins
may introduce sampling noise and/or empty bins if
observed fossil occurrences are sparse (Olszewski 1999;
Dean et al. 2020; Fan et al. 2020). For example, analysing
faunal turnover leading up to the end-Cretaceous mass
extinction  within a  regional setting  requires
well-constrained = stratigraphic placements, rather than
general assignments to the Late Cretaceous (Dean
et al. 2020). Consequently, researchers should consider
whether increasing temporal precision is truly necessary
for their study or whether it will introduce more noise
than clarity.

Geographic resolution and coverage should also align
with the research question. A global-scale study on biodi-
versity change must incorporate data from diverse regions
rather than being limited to well-sampled areas like North
America and Europe (Vilhena & Smith 2013). If data
from key regions are unavailable due to sampling biases
(e.g. poor fossil records or insufficient sampling effort),
researchers should reconsider whether their question can
still be adequately addressed, then explicitly acknowledge
this limitation if so. This assessment should be made
before cleaning data, ensuring that all necessary regions
are included and that limitations are acknowledged in the
study design. Failure to do so can result in global signals
being obfuscated by regional trends, or highlight apparent
‘global’ trends that are actually sampling artefacts (Allison
& Briggs 1993; Vilhena & Smith 2013; Brusatte et al. 2015;
Jablonski & Shubin 2015; Antell et al. 2020; Close
et al. 2020b; Flannery-Sutherland et al. 2022a). Similarly,
the accuracy and source of geographic coordinates asso-
ciated with fossil occurrence data should be carefully

considered to avoid misleading inferences (e.g. under or
overestimation of geographic range size). For instance,
geographic coordinates may be recorded via a handheld
Global Positioning System device, inferred from a
description of the locality, or estimated using the centroid
of the geopolitical unit (e.g. country) the occurrence was
found in.

If the planned study uses existing data rather than col-
lecting new data (e.g. from a publication or online data-
base), then selecting the right data source is a critical
step. Different databases serve different purposes, and the
choice depends on the research question and required
resolution and coverage. The PBDB is a widely used
resource for fossil occurrences, providing broad-scale
taxonomic, geographic, and stratigraphic data (Uhen
et al. 2023) that is best suited for large-scale palaeobio-
geographic and macroevolutionary studies. The Neotoma
Paleoecology Database specializes in Quaternary palaeoe-
cological data, including pollen, vertebrates, and geo-
chemistry, making it ideal for studies on more recent
environmental changes (Williams et al. 2018). The Geo-
biodiversity Database (GBDB) is a taxonomic, strati-
graphic, and geographic database providing occurrence,
collection, and strata data within geological sections (Fan
et al. 2013) that is well-suited to high-resolution temporal
analyses (Fan et al. 2020). The Global Biodiversity Infor-
mation Facility (GBIF) and Ocean Biodiversity Informa-
tion System (OBIS) include modern and fossil
occurrences/specimens, which can be leveraged to inte-
grate information from palaeontological and neontologi-
cal datasets (e.g. Kiessling ef al. 2012; Lima-Ribeiro
et al. 2017; Jones et al. 2019; Pilotto et al. 2021; Chiar-
enza et al. 2023; Hodgson et al. 2025). Many other poten-
tial data sources exist and a comprehensive list can be
found in Dillon et al. (2023, suppl. table 1). Finally,
cross-referencing and combining data from multiple data-
bases can be important for enhancing data reliability and
completeness, although particular care is needed to ensure
datasets and collection approaches are compatible, and
that this does not create duplicates. Depending on the
scope of the study, manually double-checking data against
the original source may also be desired, or indeed
required. However, this may not be feasible or of major
concern for some studies, such as a Phanerozoic-scale
diversity analysis (e.g. Adrain & Westrop 2000). Never-
theless, researchers should consider the full range of data
sources available and their data quality, accessibility, reso-
lution and coverage before committing to a dataset.

RULE 2: KEEP RAW DATA RAW

Once you have identified or collected appropriate occur-
rence data for the desired research question, a digital
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BOX 2. Keep raw data raw

Robin downloads the occurrence data as a ‘.csv’ file to
their computer, checking the option to ‘include meta-
data at the beginning of the output’ to preserve
information about the download. They then immedi-
ately copy the downloaded dataset to a separate raw
data folder, and save it as ‘read-only’ to make sure that
it can’t be accidentally manipulated. The raw data file
has a total of 886 occurrences.

copy must be obtained. This digital copy is defined as
raw data and remains so if it does not undergo any form
of transformation, leaving the structure and composition
of its fields and records identical to the data at the point
of acquisition. As such, raw data represents the informa-
tion available to the researcher at that moment in time
(see Box 2). Although data cleaning is likely to be neces-
sary prior to analyses, it is essential to keep a raw copy
alongside any cleaned data. Keeping raw data raw is cru-
cial for two reasons. The first is to allow identification of
errors inadvertently introduced during data transforma-
tion, by ensuring that the original data remains available
for cross-reference. The second is to enable scientific
reproducibility, by ensuring that exactly the same data
that informed an analysis is available for scrutiny and
reuse by future researchers.

Raw data is not necessarily primary data. For example,
a fossil occurrence dataset sourced from the supplemen-
tary information of a published article, or a static data
repository (e.g. Zenodo), may constitute first-hand field
observations, or a compilation from previous literature
(as is usually the case for large online databases). What
matters here is that the raw data are unedited with
respect to the project currently being conducted.

Upon acquisition, raw data files should be immediately
stored in a dedicated directory using a simple, descriptive
file name, and in a format that preserves its structure and
integrity (Borer et al. 2009). If a dataset contains entries
with non-ASCII-printable text, such as accented charac-
ters (e.g. Candeldria Formation), then it may also be
appropriate to ensure that the file encoding will preserve
this text as accurately as possible (e.g. a .csv file with
UTF-8 encoding). If compression is required to meet
memory restrictions, then a lossless format should also be
used to avoid degradation of the raw data (e.g. a zip
folder).

Manually opening raw data files should be avoided
where possible; different software programs and versions
may (and often do) perform automatic formatting upon
opening, potentially resulting in mass data alteration
(Perkel 2019). A file may be stored in a read-only format
to prevent inadvertent alteration of the raw data (Broman

& Woo 2018), with backups stored in other locations to
further guard against future losses or alterations (Wilson
et al. 2017). To avoid editing raw data, a researcher can
perform manual edits on a working copy of the static file,
or by reading the file data into a programming environ-
ment where scripted edits can be made to the temporary
copy in the computer’s memory using a programming
language (e.g. R or Python). In the latter case, the script
then also functions as a precise log of any alterations to
that dataset (see Rule 3; Appendix S1) (Borer et al. 2009).

Understandably, a researcher may wish to make small,
practical alterations to the raw data itself (e.g. renaming
column headers, manual correction of singular or over-
whelmingly rare typographical errors) or performing sim-
ple reformatting (e.g. extraction of relevant columns or
data sheets) to improve ease of downstream use. In most
cases, such procedures can be scripted and manual
manipulation of the raw data should still be avoided
(Borer et al. 2009). If manual editing of the raw data is
essential, this should be kept to the minimum possible,
and a comprehensive description of these changes should
be documented (e.g. as a plain text file) and kept along-
side the static raw data file.

Every effort should be made to ensure that any raw
data acquired for analyses remains static and accessible
for future users. New data are constantly being added to
online community databases (e.g. PBDB and Neotoma),
while existing entries can be revised, merged, or deleted
for a range of reasons including (but by no means limited
to) human error, changes in taxonomic opinion, and
refined age dating. As such, online community databases
are not strictly static repositories, as a future user may
obtain a different dataset from that of a past user, even
with identical download parameters. Some databases pro-
vide a service to archive a copy of a raw data download
on request (e.g. PBDB; Uhen et al. 2023), and others
automatically do so (e.g. GBIF), providing a citable
unique digital object identifier (DOI). However, it should
not be taken for granted that raw data being archived at
the source will always be available, whether that be an
online database or the supplementary files of a journal
article. Raw data may become unavailable in the future
due to the loss of funding and maintainers, file corrup-
tion, and journals becoming non-operational. To further
guarantee the long-term availability of raw data, raw data
should be archived in a suitable open-access repository
whenever possible (see Rule 10).

RULE 3: DOCUMENT YOUR
WORKFLOW

In almost every data-oriented project, researchers carry
out some form of filtering, cleaning, formatting, or other
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BOX 3. Document your workflow

Robin then begins to set up their project. They make a new
project in RStudio, which they also link to their GitHub
account to ensure that they have version control and
therefore a record of all the steps taken when developing
their code and assessing their data. They begin to set up
their R workflow, making sure to have a clear overarching
structure in their project, making use of section labels.
Robin also begins to set up their manuscript file,
documenting the steps taken so far in the ‘Methods’
section. They will continue to update this with relevant
information as they carry out their analysis, and will
make sure to add inline comments to the R script
explaining what they’re doing and why.

operations to transform raw data into a workable and
appropriate state for analysis (see Rules 4-8). Document-
ing these steps is essential to ensure transparency, repro-
ducibility, and a clear understanding of how data have
been processed (Stoudt et al. 2021). Together, these steps
can be described as a ‘workflow’, which represents a
sequence of tasks or processes that are systematically
organized to achieve a specific purpose (Box 3). In a
workflow, each step often depends on the previous one,
and tasks are completed in a particular order to maintain
efficiency, consistency, and accuracy. Workflows can be
simple, involving just a few steps (e.g. restructuring of
data), or complex (e.g. data cleaning and imputation),
encompassing multiple transformations. Having a clearly
defined workflow can help streamline data processing
steps, reduce errors, and enhance reproducibility by pro-
viding a clear, repeatable structure for completing work.

Documenting your workflow improves the transpar-
ency, reproducibility, and overall value of your research
by serving as a reference or guide for repeat, follow-up,
or new analyses; whether by the individual who docu-
mented the workflow, a collaborator, or any member of
the research community. This can be particularly vital
when going through the review process or onboarding
new team members and collaborators. Documented work-
flows can also serve as a key avenue for transferring
knowledge about data processing decisions through pre-
serving the ‘what’ (i.e. what data is being transformed),
‘why’ (i.e. why is the data being transformed), and ‘how’
(i.e. how is the data being transformed).

Workflows for cleaning occurrence data in palaeo-
biology fall into two categories that can be used indepen-
dently or in combination: (1) manual transformation
(e.g. hand-typed step-by-step actions in spreadsheet soft-
ware); and (2) programmatic transformation (e.g. use of
automated functions or pipelines within a script of a pro-
gramming language). Manual manipulation of occurrence
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data often takes place in spreadsheet software such as
Microsoft Excel, Google Sheets, LibreOffice Calc, or Apple
Numbers, but can also be implemented in text editors.
While transforming data in such software can often be
more intuitive and user friendly than through program-
matic solutions (e.g. in R or Python), the process of doc-
umenting the exact steps taken when transforming raw
data can be laborious and prone to a lack of clarity. Con-
versely, programmatic data cleaning provides a clear and
traceable workflow, recording the steps taken to clean the
data. Through commenting code, additional context for
specific data cleaning steps can also be provided to justify
decisions made (e.g. taxonomic updates, exclusion of a
specific data point), guide future users, or aid the original
developer when revisiting a project. In addition, several
formal workflow tools exist that can be leveraged to sup-
port data cleaning (e.g. occTest; Serra-Diaz et al. 2024)
and workflow documentation (e.g. SnakeMake (Koster &
Rahmann 2012; Moélder et al. 2021) and Galaxy (Giardine
et al. 2005; The Galaxy Community 2024)). To achieve
sufficient code proficiency to the extent that a fully pro-
grammatic workflow can be developed, however, is not
necessarily easy or efficient, and can be a steep learning
curve (Brousil et al. 2023). While we generally advocate
for a code-based approach to occurrence data cleaning
herein, succinctly described manual data cleaning steps
can be of equal value and may even be more accessible to
the broader community. For researchers with less famil-
iarity with programmatic data transformation (e.g. regex,
text parsing), resources are also available for generating a
reproducible script of manual data transformation (e.g.
OpenRefine). Notably, even in workflows which are
entirely code-based, some elements may still require a
degree of manual notation. For instance, when acquiring
secondary data (e.g. downloading a dataset), it can be
important to document the date of download, which may
not inherently be obvious within an entirely code-based
pipeline. Through the implementation of Rule 2 and
Rule 10, the exact data cleaning that has taken place can
be inferred through file comparison software (even with
manual workflows). Importantly, neither code-based or
manual workflows are immune to the possibility of intro-
ducing errors during data cleaning: check-in steps and
proof-reading should form an integral part of any
workflow.

RULE 4: EXPLORE YOUR DATA

After obtaining the raw data to address your research
question and deciding how to document your workflow
(see Rules 1-3), a practical next step is to explore your
data. Exploratory data analysis involves using graphical
tools and basic statistical techniques to better understand
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the characteristics of your dataset, identify anomalies, and
uncover patterns (Tukey 1977; Quinn & Keough 2002).
This step is important for a variety of reasons. First,
exploring your data can reveal the structure and attributes
of your dataset, such as variable types and distributions,
numbers of observations, and spatial or temporal depen-
dencies between observations. Second, it can highlight
relationships between variables to guide future analyses
and maximize statistical insights. Third, exploring your
data can help you select appropriate statistical tools and
verify their assumptions to avoid type I (false positive)
and II (false negative) errors that might lead to incorrect
conclusions (Zuur et al. 2010). In doing so, exploratory
data analysis can illuminate aspects of your data that
should be accounted for when constructing models, such
as non-normality, collinearity or interactions between
covariates, and spurious correlations. Exploratory data
analysis can also flag systematic biases (e.g. taphonomic
or sampling biases) that warrant careful consideration
when interpreting your results. Lastly, exploring your data
can reveal missing values (see Rule 5), outliers (see
Rule 6), inconsistencies (see Rule 7), duplication
(see Rule 8), and other unusual or erroneous values that
require cleaning. Together, exploratory data analysis is
used to assess the quality and completeness of your data-
set and gauge whether it can provide a meaningful and
representative sample to address your research question.
Without this step, you run the risk of applying inap-
propriate  statistical techniques or making faulty
inferences.

Exploring your data is a creative and iterative process
that is driven by asking questions about your dataset. As
such, exploratory data analysis workflows will inherently
be dataset dependent, as will the level of scrutiny applied
when cleaning the data. Nonetheless, the core data
exploration steps often include the following: (1) creating
data summaries; (2) visualizing distributions of individual
variables; and (3) visualizing relationships between vari-
ables. These data exploration steps, together with data
cleaning, will often take up the majority of the time you
spend analysing your data (Zuur et al. 2010). However,
starting simple and being thorough upfront can ulti-
mately produce a more robust and insightful data
analysis.

A first step when becoming familiar with your dataset
is to produce descriptive summary statistics of the central
tendencies and variances of groups in the data. Histo-
grams are typically used to plot the distributions of indi-
vidual variables, flag outliers, determine whether there are
high numbers of zeros, and assess normality (along with
QQ-plots and formal tests such as Shapiro-Wilk). A com-
bination of scatterplots, correlation matrices, box plots,
ordinations (e.g. principal component analysis), and clus-
ter analyses should then be used to visualize bivariate and

multivariate relationships between variables, depending
on the data types present (see Zuur et al. 2010). These
graphical tools can reveal interesting patterns between
variables and highlight covariates that might be important
to include as predictors in more complex models. This
process can also help refine the hypotheses being tested,
especially given the observational nature of palaeo-
biological data, yet caution should be exercised to avoid
circularity (Hammer & Harper 2024). Circular reasoning
can arise when the same variable is used to both define
and test for differences between groups, such that the
outcome is guaranteed by the analytical approach (Makin
& Orban de Xivry 2019). For example, you might notice
during exploratory data analysis that your occurrences
cluster in a particular way. If you then use those clusters
to filter your data and define groups (e.g. clades that
either increase or decrease in richness through time), you
run into issues if you then examine differences in diver-
sity across those groups because the statistical inference is
tied to your grouping criteria; it’s a self-fulfilling pro-
phecy. For more in-depth treatment of these tools, Zuur
et al. (2010) outlined protocols for exploratory data ana-
lysis in ecology, which can readily be adapted to palaeo-
biological data (see Birks et al. 2012).

Each of these steps can be scripted in R, other
computer programming languages, or even in spreadsheet
software, and used to create a transparent and reproduci-
ble log of the exploratory data analysis workflow (see
Rule 3), what was discovered, and how these initial infer-
ences shaped the final analysis. To wrangle data and gen-
erate basic summary statistics, the dplyr (Wickham
et al. 2023a) and tidyr (Wickham et al. 2024) packages
(part of the tidyverse; Wickham et al. 2019) as well as
skimr (Waring et al. 2022) are particularly helpful. These
packages can be used in tandem with palaeoverse (Jones
et al. 2023), which contains functions designed for work-
ing with fossil occurrence data such as temporal or spatial
binning, range calculations, identifying unique taxa, and
flagging misspellings of taxonomic names. For example,
you might want to assess how many bins you have data
available for. To visualize relationships between variables,
ggplot2 (Wickham & Sievert 2009), psych (e.g. ‘pairs.pa-
nels’ function; Revelle 2024), GGally (e.g. ‘ggpairs’ func-
tion; Schloerke et al. 2024), corrplot (Wei & Simko 2024),
and DataExplorer (Cui 2024) offer useful graphical func-
tions. A multitude of online resources exist to help build
competency in programming as you explore your data,
including R for Data Science (Wickham et al. 2023b),
R Graphics Cookbook (Chang 2018), and Posit cheat
sheets  (https://posit.co/resources/cheatsheets/). Impor-
tantly, we recommend commenting code and keeping a
record of exploratory data analysis results and visualiza-
tions to refer back to as you develop analyses and com-
municate findings (see Rule 9) (Box 4).
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JONES ET AL.:

BOX 4. Explore your data

To get an idea for how their data is distributed and its
various characteristics, Robin first decides to generate some
basic summary statistics and plots. As they are interested in
assessing palaeodiversity, Robin checks the proportions of
the different taxonomic ranks in the dataset. They find that
c. 28% of the occurrences (about 250 in total) are assigned
to the species level, and that a further c. 28% are assigned to
genera. Because of this, they think it might be wise to carry
out palaeodiversity analysis at the rank of genus to ensure
that they have enough data to find meaningful patterns.
However, they will decide upon this after doing a more
thorough assessment of the data. They also look at the
geographical distribution of occurrences by looking at their
associated country codes, finding that Palaecogene croco-
diles are found in a total of 46 countries. However, after
sorting these data, they find this number drops to 45
countries. Something odd has happened that they will have

to investigate during future data cleaning steps.

RULE 5: IDENTIFY & HANDLE
INCOMPLETE DATA RECORDS

When exploring your dataset by carrying out exploratory
data analysis (see Rule 4), you may encounter ambiguous,
incomplete, or missing data entries. These incomplete or
missing data records can occur due to various reasons. In
some cases, the data truly do not exist or cannot be esti-
mated due to issues relating to taphonomy, collection
approaches, or biases in the fossil record (e.g. information
derived from highly fragmentary fossils, historical collec-
tions without associated geological or chronological infor-
mation, or underrepresentation of certain taxonomic
groups). In other cases, discrepancies may arise because
data were collected when definitions or contexts differed,
such as shifts in geopolitical boundaries and country
names over time (e.g. an occurrence that only has ‘Cze-
choslovakia’ listed as the country of origin cannot be pre-
cisely located today). Additionally, data may be
incomplete for some records, but can be inferred through
other available data (e.g. inferring country of origin
through geographic coordinates). Although an intuitively
common issue in palaeobiology given the uneven and
incomplete nature of the fossil record (Raup 1972; Allison
& Briggs 1993; Cherns & Wright 2000; Vilhena
& Smith 2013; Dean et al. 2019), missing information can
bias the results of palacobiological studies (e.g. Kearney &
Clark 2003; Norell & Wheeler 2003; Wiens 2003; Marshall
et al. 2018; Jones et al. 2021; Dean & Thompson 2025).
Occurrence data are inherently based on the existence of
a particular fossil, but missing data associated with that
fossil occurrence can also affect analyses that rely on
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that associated data (e.g. studies examining environmental
associations will be impacted by missing environmental
data).

Depending on your research goals and the data
required to address your questions, incomplete entries
may either be removed through filtering or addressed
through imputation techniques. Data imputation
approaches can be used to replace missing data with
values modelled on the observed data using various meth-
ods (Gendre et al. 2024). These can range from simple
approaches, like replacing missing values with the mean
for continuous variables (e.g. morphometric measure-
ments or associated climatic variables), to more advanced
statistical or machine learning techniques (see Demir-
tas 2018; Van Buuren 2018; Haghish 2022). If you do
decide to impute missing data, it is essential that this pro-
cess and its effects on the dataset are clearly justified and
documented (see Rule 3) so that future users of the data-
set or analytical results are aware of these decisions.
Although missing data can reduce the statistical power of
analyses and bias the results, imputing missing values can
introduce new biases, potentially also skewing results and
interpretations of the examined data (Newman 2014).
Therefore, if a dataset has sufficient data to test the
desired hypotheses, or if incomplete data entries cannot
be imputed reliably, these entries should be deleted in
their entirety during the data cleaning process, while
clearly documenting how entries were chosen for exclu-
sion (see Rule 3). Alternatively, some data analyses allow
for incomplete data entries (e.g. non-metric multidimen-
sional scaling), and so where these methods are appropri-
ate, you may choose to retain your incomplete data
entries as-is.

To decide how to handle missing data, start by identi-
fying the gaps in your dataset, which are often repre-
sented by empty entries or ‘NA’ (meaning ‘not available’
or ‘not applicable’). For imputing missing values, numer-
ous methods and tools are available in your coding lan-
guage of choice, such as missForest (Stekhoven &
Buehlmann 2012), mice (Van Buuren &
Groothuis-Oudshoorn 2011), and kNN (Kowarik &
Templ 2016). Additionally, the R packages TDIP (Gendre
et al. 2024) and mlim (Haghish 2022) integrate various
imputation and error identification methods, facilitating
method comparison. Many detailed open-access refer-
ences exist with which to compare the underlying meth-
odologies of imputation approaches (e.g. Blomberg &
Todorov 2025), and which provide guidance on the dif-
ferent missing data types and how to choose imputation
methods and parameters (e.g. see Van Buuren 2018).

Removing missing data can be straightforward when
working with small datasets. For manual removal, tools
such as spreadsheet software can be sufficient (although
see Rule 3). In R, built-in functions such as
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BOX 5. Identify & handle incomplete data records

Robin next begins to systematically explore their data in
more detail, first making sure that the occurrences aren’t
missing vital information. As they are assessing
biogeography, they first find any occurrences that are
missing palaeocoordinates and decide to remove them
from the dataset rather than trying to estimate new
palaeocoordinates using available tools. After removing
these data, they check to make sure that all of the
occurrences have both modern and palacocoordinates,
then decide to revisit the issue of missing data within the
‘country code’ field. They find that there are two
occurrences which have a value of ‘NA’; normally this
would mean missing data, on further checking their
geographic position using modern coordinates, Robin
finds that they are actually from Namibia (i.e. NA). It
seems R has misconstrued these records!

complete.cases() and na.omit() quickly identify and
remove rows containing missing values. The tidyr package
also provides the drop_na() function for this purpose
(Wickham et al. 2024). However, incomplete data entries
can also be of use without imputation or removal; for
example, the tax_unique() function from the palaeoverse
R package (Jones et al. 2023) can flag ‘cryptic diversity’
that arises due to taxa not assigned to a specific species
or genus, but which represent the only appearance of that
clade in the geographic region or time period of choice
(e.g. Mannion et al. 2011) (Box 5).

RULE 6: IDENTIFY & HANDLE
OUTLIERS

Outliers, data points which lie to the extremes of the dis-
tribution of all data or otherwise deviate from compar-
able data points, will become readily apparent when
exploring your dataset (see Rule 4). Outliers may arise
from a mistake in data entry, or because the value repre-
sents a genuine anomaly compared to the other available
data. Identifying outliers is therefore doubly useful: it is a
way of highlighting potentially suspect data for subse-
quent checking, and also allows us to better understand
the range of values our data holds. Outliers are particu-
larly important when an analysis investigates the maxi-
mum and minimum values of a field, or for calculations
involving confidence intervals, as unusually small or large
values can influence such analyses more strongly than
other data points.

Most data types are amenable to some form of outlier
analysis. For numerical data, this usually involves identi-
fying the points lying at the extremes of the range of

values. A simple example of this is creating a box plot,
where typically the ‘whiskers’ are quantified based on
some range of values describing the data, and any points
lying outside of this range are plotted as individual out-
liers. Here, the choice of cut-off is very important, and
many different methods exist for setting outlier cut-off
points that might be applicable in different situations
(Aggarwal 2017). The shape of the distribution of the
data also matters. Many methods of generating confi-
dence intervals assume that data are normally distributed,
but this is often not the case for real-world biological or
palaeobiological datasets, and should be borne in mind
when selecting a method. For categorical data, a more
appropriate method of identifying outliers might be
examining abundance counts for the different categories
to identify those with only a few instances. On such
topics, we recommend referring to classic textbooks on
statistics  for (palaeo)ecologists (e.g. Hammer &
Harper 2024).

The types of data commonly present in occurrence
datasets can be checked for outliers in a multitude of
ways. Checking age data for outliers can be very impor-
tant: if we wish to quantify the temporal or stratigraphic
range of a taxon, then a misplaced data point could fal-
sely prolong our inferred range by millions of years. This
is true for both numerical (e.g. 250 Ma’) and categorical
(e.g. ‘Triassic’) forms of age data. Collecting tip or node
age priors for phylogenetic inference is a common use of
such data for which identifying outliers can be particu-
larly important for downstream analyses (Mulvey
et al. 2025). For such questions, the data resolution at
which outliers are quantified should be carefully consid-
ered: for example, the age of an occurrence may appear
anomalous for a specific species, but not within the con-
text of the wider genus. This difference may alter the
appropriate course of action for dealing with such data
points. An example of a palaecontology-specific outlier
detection method is the ‘Pacman’ method (Lazarus
et al. 2012), which uses ‘known’ age distributions for
biostratigraphic markers to identify outliers in numerical
stratigraphic data. This approach, and other relevant
functions, are available in the fossilbrush R package
(Flannery-Sutherland et al. 2022b).

Exploring data to search for taxonomic outliers can
also be a helpful way of identifying mistakes. In the case
that a collection of fossils is stated to contain nine spe-
cies of bivalve and one species of shark, it is worth
checking that the shark occurrence is correct. Otherwise,
for example, it could be that the shark species actually
has the same name as a bivalve species and has been
miscategorized, or that the shark species is a misspelling
(an example of this being the genus Megalodon, a
bivalve from the Jurassic, being confused with Otodus
megalodon, the giant shark from the Neogene). For
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BOX 6. Identify & handle outliers

Happy that the dataset contains the information needed,
Robin sets out to identify potential outliers that might
affect the specific variables that relate to their research
question. To do this, Robin first plots a map of where
crocodiles have been found across the globe to see if any
fall in places that we would not expect. They find several
occurrences that appear within Antarctica, which is outside
the expected climate tolerances of the group. By checking
these occurrences against the associated references, it turns
out that the collections associated with these anomalous
occurrences appear to be legitimate, but the occurrences
themselves are only listed as ‘Crocodylia indet.” Robin
could consider removing these occurrences due to this
lack of certainty, but they would have to be consistent in
their approach across the data, and make sure that the
procedure is documented so that future researchers can
follow their approach (see Rule 3).

multivariate data (e.g. geographic coordinates), convex
hulls can be generated to identify points that form the
corners of the hull, and therefore lie at the extremes of
the data. The distance of these points from the rest of
the data can then be quantified, with those at the great-
est distance highlighted for further checking. However, it
is worth considering that geographic coordinates are
often subject to limits which can artificially create clum-
piness in the data. At a global scale, the distribution of
the continents serves as a major control on the potential
spread of both species and fossil preservation, and an
apparently large distance between any two data points
may simply represent an area of ocean between two
continents. CoordinateCleaner (Zizka et al. 2019) is an R
package designed specifically for cleaning the geographic
coordinates of occurrence data, including via outlier
detection.

It is also possible to design downstream analytical
workflows with outliers in mind, which may be particu-
larly appropriate when it is unclear whether outliers
should be removed from a dataset or not. For example,
a simple strategy is to calculate and use the 90th or
95th percentile of the data instead of maximum values,
or median values over mean values. More complex alter-
natives include bootstrapping, jackknifing, and related
methods implement repeated subsampling of a dataset;
this has the overall effect of amplifying the signal of
common data values, and diminishing the signal of rare
data values (which typically include any outliers). This
can reduce the influence of outliers on the results with-
out completely excluding these values from analysis
(Box 6).

RULE 7: IDENTIFY & HANDLE
INCONSISTENCIES

When carrying out exploratory data analysis on your
dataset (see Rule 4), it is also likely that inconsistencies
will become apparent. Inconsistencies refer to deviations
in the format, structure, or definitions of data values in a
dataset, and they can occur in all types of variables (e.g.
numerical, categorical). Inconsistencies can represent
information that is definitively incorrect (e.g. a taxonomic
name spelt both correctly and incorrectly in different
records) but can also arise from variation of input into a
dataset. This could be due to inconsistencies in standards
or unclear definitions of variables (e.g. alternative, but
correct, spellings of the same geological formation or dif-
ferent date formats being used in the same column), stan-
dards which have changed over time (e.g. a stage being
given new age boundaries as a result of increased accu-
racy of new radiometric dates) or conflicting scientific
opinions (e.g. two fossils of the same species input under
different taxonomic names by researchers holding differ-
ing opinions). Although it is common for inconsistencies
to apply across different rows within a single column of
variables, they can also apply across multiple related col-
umns. For example, columns for the earliest and latest
ages of a fossil occurrence may have different data for-
mats, or there could be a discrepancy between the named
chronological interval for an occurrence in one column
and its numerical age in a separate column. Inconsisten-
cies may not inherently represent errors in data values,
but their inclusion in a dataset can lead to a variety of
downstream issues during data analysis, including skew-
ing of summarized values, or the incorrect parsing of data
by software. These issues can have serious knock-on
effects for the interpretation of results, so it is essential
that they are rectified prior to further data analysis. Given
the variety of ways that inconsistencies can arise in a
dataset, identifying them is challenging and can require
high familiarity with the dataset. Exploratory data analysis
should therefore be performed iteratively (see Rule 4) to
minimize their risk of inclusion.

When searching for inconsistencies in your data, it is
essential to first set definitions and standards for the data,
which may be different from those associated with the
original format of the dataset. This involves ensuring that
you have made clear and consistent decisions on value
formats, structures, and classes (e.g. are dates listed as
DD-MM-YYYY or MM-DD-YYYY or YYYY-MM-DD?),
variable definitions (e.g. the column ‘min_ma’ refers to
the minimum possible numerical age of the fossil occur-
rence in millions of years before present in Box 1), and
the necessary precision of your values (e.g. all measure-
ments in a column will be in centimetres rather than
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millimetres). When making decisions regarding the for-
matting of a column, it is always advisable to make edits
in a copy of that column to retain the original informa-
tion (see Rules 2 and 3). Similarly, adding new columns
and comments that contextualize your decisions or con-
cerns about a column’s accuracy can help avoid the pit-
falls of manual workflows (see Rule 3) and aid future
users of your data.

Many inconsistencies will become apparent as you
familiarize yourself with the spread of data within a parti-
cular column (see Rule 4). When using R, the ‘table()’
function can highlight the frequency of categorical values
within a column, which can quickly reveal inconsistent
data. Additionally, systematically checking within and
between columns for formatting and spelling discrepan-
cies will flag data values which appear problematic. Some
inconsistencies may relate to facets of your data that you
are less familiar with. This could result in incorrectly
identifying values as inconsistencies which are actually
separate data points (e.g. close taxonomic spellings, which
represent different taxonomic units rather than spelling
mistakes. For instance, Varanops is a genus of early Per-
mian carnivorous synapsid, whereas Varanopus is an ich-
nogenus of tetrapod footprints also from the Permian),
or missing inconsistencies due to a lack of knowledge
(e.g. two geological formation names that have now been
united under one name). In these cases, we recommend
flagging potential issues and obtaining assistance from the
literature or other researchers who have expertise in that
particular area, rather than making decisions which may
result in inaccurate data.

Because inconsistencies are inherently related to the
values of the data that you are working on, the ultimate
resource for resolving issues is the literature for the corre-
sponding geographic region, taxonomic group or time per-
iod of study. Additionally, there are a variety of packages
in R that can help identify potential inconsistencies in your
dataset. The fossilbrush package (Flannery-Sutherland
et al. 2022b) aims to assist with chronostratigraphic and
taxonomic harmonization within a dataset. Similarly, the
‘tax_check()” function of the palaeoverse package (Jones
et al. 2023) can help to check for and tally potential spel-
ling variations of the same taxon. The previously men-
tioned CoordinateCleaner package (Zizka et al. 2019) is
also widely used to automatically and systematically flag
common spatial and temporal errors in biological and
palaeobiological collection datasets in a way that is sys-
tematic, transparent and easily built into personal work-
flows. However, packages such as these automatically flag
records based on predetermined mathematical rules and so
are blind to the context of the data that they are assessing.
Consequently, such approaches should be used as a com-
plement to, rather than a replacement for, decision making
by the researcher (Box 7).

BOX 7. Identify & handle inconsistencies

It’s then time for Robin to do a thorough check for
inconsistencies in the dataset. They check whether the
class types of the fields in the dataset make sense (e.g.
the ‘max ma’ and ‘min_ma’ variables are listed as
‘numeric’), and make sure that there aren’t inconsisten-
cies between columns in the dataset (e.g. making sure
that occurrences with the same value in the ‘ear-
ly_interval’ column all have the same value for
‘max_ma’). Robin then uses several automatic check
functions in different R packages to flag any taxonomic
or formation names that might have several different
spellings. They quickly find that there are several
formations which have suspiciously similar names, one
obvious pair being ‘San Sebastian’ and ‘San Sebastian’.
After checking the literature to make sure that these are
indeed the same formation, Robin corrects the spelling

to ensure consistency across the dataset.

RULE 8: IDENTIFY & HANDLE
DUPLICATES

Duplicate appearances of data entries are also a common
issue with occurrence datasets. The identification of
duplicate fossil occurrences is an essential step in data
cleaning, as neglecting them can directly impact the accu-
racy of analyses in a non-random way; by increasing the
signal of repeated data points in the dataset (see Rules 6
and 7). There are several ways in which the same occur-
rence might be recorded in a dataset multiple times. The
first is identical duplicates, where the exact same record
appears twice or more within a dataset. This is unlikely,
as occurrences within large databases are often assigned
consecutive unique identifiers and by definition cannot
appear twice. However, there are several circumstances
where this can occur. For example, when two previously
taxonomically unique occurrences are synonymized under
the same taxonomic name, when merging occurrences
sourced from different databases (e.g. the same fossil spe-
cimen could be independently entered into both GBIF
and the PBDB), or from user error when manually
manipulating a dataset (although this should be minimal
if following Rules 2 and 3). A more common form of
data duplication is the entry of the same fossil or collec-
tion of fossils as two separate occurrences or collections
by different contributors to the database in question.

The first step for resolving duplicate occurrences in your
dataset is choosing the criteria for identifying duplicates.
Identical duplicates should be inherently easy to spot, as
they will consist of exactly the same values across all vari-
ables (after inconsistencies have been addressed). Dupli-
cate occurrences arising from multiple entries of the same
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fossil are more challenging, as user variation during data
entry will mean that not all variables are likely to be iden-
tical. When this is the case, one potential way to identify
duplicates is to use columns in the dataset related to the
reference (e.g. original descriptive publication) from which
the occurrence was acquired; though consideration of
what constitutes a duplicate should be established for your
specific project (e.g. if we are interested in the total num-
ber of localities, multiple references may refer to the same
locality and therefore could be defined as duplicates). Mul-
tiple occurrences of the same taxon from the same refer-
ence might indicate that data duplication has taken place;
checking the original reference will help resolve this. Other
columns that are likely to have obvious duplicate values
include those that tie a data record to a particular geo-
graphic or temporal position (e.g. two records with
similar/identical ~ geographical ~ coordinates)  (Pires
et al. 2015; Zizka et al. 2020; Bonnet-Lebrun et al. 2023).
Once the criteria for removing duplicates are estab-
lished, only one occurrence record should be retained in
the processed dataset if multiple share the same taxonomy,
stratigraphic position, geological age, and coordinates. It is
ultimately the researcher’s decision whether to exclude
potential duplicates from the dataset, and the reasons for
doing so should be documented (see Rules 3 and 9). How-
ever, accidental removal of non-duplicate data can also
bias the results of a study, and so it is advisable to be con-
servative when removing entire occurrence entries. Data
duplicates can be more difficult to identify if inconsisten-
cies (see Rule 7) are present in the dataset, such as if the
same taxon has an entry for two different ages or geologi-
cal localities, where the age/location names have been
redefined or have different regional names. This means
that identification of inconsistencies and duplications (see
Rule 8) should often be performed iteratively.
Identification and removal of duplicates can be done
manually, but this approach has a high time—cost with
large datasets, particularly when identifying them can be
challenging in the first place. Alternatively, different soft-
ware packages can help streamline this process. Duplicates
can be removed using Excel by filtering the different col-
umns of your dataset, though this can be too time inten-
sive. In Python, this can be achieved using Pandas
(McKinney 2011), a library developed specifically for data
manipulation. Scripting in R offers quick and effective
alternatives; unique() or distinct() from the dplyr package
(Wickham et al. 2023a) can be used to return a dataset
with any direct duplicates removed. More complex
approaches, such as CoordinateCleaner (Zizka et al. 2019)
and fossilbrush (Flannery-Sutherland et al. 2022b), can
flag spatial, temporal, and taxonomic errors in occurrence
data. As discussed in Rule 7 and above, thorough litera-
ture and repository searches, or external expertise on
variables/groups you are less familiar with, should also be
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BOX 8. Identify & handle duplicates

For the last step of data cleaning, Robin needs to remove
any duplicates that might have crept into the dataset, as
these could impact further analyses. Robin makes a new
dataset including only the fields ‘collection_no’ and
‘accepted_name’, and then retains only the unique rows.
By comparing the number of rows between this dataset
and the total dataset, they find that 24 occurrences were
absolute duplicates. Robin then double checks these,
and removes them from the original dataset. After
finishing this step, Robin now has a pretty good idea of
how this dataset looks. They therefore decide to go back
and re-run their initial summary statistics as well as
adding some additional tests, before going back and
further refining the dataset.

used in tandem with the above analytical approaches to
resolve data duplications (Box 8).

RULE 9: REPORT YOUR DATA &
CLEANING EFFORTS

After cleaning your data and ensuring that it is fit for
purpose, it’s crucial to report on the cleaning steps you
took and the overall state of your data. Reporting
includes detailing how you carried out the cleaning steps
(see Rules 5-8, using the workflow from Rule 3), why
these were taken, the impact cleaning had on dataset
composition (such as the pre- and post-cleaning occur-
rence counts; see Rule 4), and dataset summary statistics.
Reporting these steps enables reproducibility: without
knowing how the data were cleaned, it is impossible to
understand the dataset in its processed form or reproduce
the downstream analyses. This also increases transparency,
such that other researchers will understand how and why
the cleaning steps were performed, as well as the time
investment on pre-analysis steps that is not otherwise well
documented. Reporting on data cleaning also provides a
venue for furthering acknowledgement; we can take this
space to document other data sources and software (e.g.
R packages) that contributed to the dataset in question
before or during the cleaning process.

Reporting should involve carefully documenting at
minimum: (1) how the data were chosen to be collected
(see Rule 1); (2) the data exploration performed (see
Rule 4); (3) how outliers, inconsistencies, and duplicates
were identified, their counts, and how they were dealt
with (e.g. removed, corrected, resampled; see Rules 5-8);
and (4) the pre- and post-cleaning dataset summary sta-
tistics. The summary statistics should cover, for both the
original raw dataset and the final cleaned dataset:
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the overall counts of occurrences, sampling units, or any
other variables of interest; if applicable to the data,
aspects like means and standard deviations or ranges of
variables of interest; the degree of uncertainty regarding
pertinent variables (e.g. how certain are the taxonomic
assignments or stratigraphic occurrences, and to what
granularity are these recorded?); the impact of any filter-
ing (i.e. n occurrences were excluded by cleaning step x);
and any imputation in the dataset. Reporting your data
cleaning should be clearly documented in the methods
section, in the supplementary material, or accompanying
the dataset (see Rule 3).

Dataset reporting should also cover any cleaning cases
specific to your data or difficulties in data processing that
would be of interest to future data users or relevant spe-
cialists. This might include removing any occurrences of
specific taxa due to a debate over taxonomic uncertainty
(e.g. taxa with cf, aff,, ?), synonymizing, or higher group
assignment, or removing occurrences from specific geo-
graphical regions or localities due to uncertain age assign-
ment. For example, a study on global trilobite
evolutionary trends might choose to identify and exclude
entries in their occurrence dataset of families that recent
assignments place within the poorly defined (i.e. ‘waste-
basket’) order ‘Ptychopariida’ (by following a published
taxonomic list, such as Adrain 2011). A global study on
Cambrian palacobiogeography might explain that they
chose to time-bin their dataset differently because the
Cambrian Stage 10 (Cohen et al. 2013) has an as-yet
undefined base. In both examples, these data cleaning
decisions require direct explanation because they are not
obvious to non-specialists (or future researchers) on the
taxonomic group or time period, and will have extensive
impacts on the analysis results, which might influence
how other researchers view or use the data or results in
the future.

Several resources exist to aid the reporting process.
When downloading raw occurrence data, such as from
the PBDB, you can often download a supplementary
reference list citing all the contributors to the data you
downloaded. These should then be incorporated into
publication reference lists (preferably) or supplemental
references (see Smith et al. 2024 for discussion). If you
gathered data from the primary literature, or used litera-
ture to verify potentially erroneous entries in your dataset
(e.g. Rules 7 or 8), then you should compile a list of
references manually or using bibliographic software (e.g.
Zotero). Similarly, you can download package version
citations in R or Python for those used during cleaning.
Additionally, pre-formatted reporting templates exist,
such as those by PRISMA (Page et al. 2021), which could
be included in the supplementary information of an arti-
cle (Box 9).

BOX 9. Report your data & cleaning efforts

Robin now has a cleaned dataset that they use to run some
analyses, and they find some results which are worthy of
publication. When Robin writes up their manuscript, they
make sure to report all the steps that they took to clean the
data in their ‘methods’ section and in the associated
supplementary materials, drawing attention to the
decisions that they made on particular occurrences
(e.g. what Robin decided to do with the ‘Crocodylia
indet.” specimens from Antarctica). Robin makes sure
their code is clean, structured, and legible, and
sufficiently commented such that it can be followed by
someone who is less familiar with the approaches that
they took.

RULE 10: DEPOSIT YOUR DATA &
WORKFLOW

Once you have documented and reported how you have
followed Rules 1-8 (see Rule 9), it is critical that you
deposit all of your data and workflow files in a reliable
archival repository, preferably prior to review. This
enables transparency, data accessibility, and reusability as
well as research reproducibility (see Table 1) for the fore-
seeable future. Further, by uploading your workflow, you
allow others (and future you) to apply your cleaning and
filtering steps to their own data, reinforcing standard
practices and preventing duplicated effort. At the mini-
mum, your archived files should include your raw data
file(s) (see Rule 2) and your data processing documenta-
tion (see Rule 3). However, you should aim to archive as
much of your entire research workflow as possible (see
Rule 9). For example, such an archive would ideally
include the scripts that you wrote to perform cleaning
and filtering operations (see Rule 3) and/or analysis and
visualization of your cleaned data, including any figures
in the accompanying paper (see Rule 4). It should also
include modified versions of the data file created before
or after manual and/or automated cleaning and filtering
steps have been performed, and your reporting on how
the data was changed by cleaning (see Rule 9). Finally, in
addition to depositing these files (preferably in non-
proprietary formats, e.g. .csv or .txt), you should also
include a metadata file which describes the attributes of
your various files, including their source, purpose, and, in
the case of data files, column definitions (Baca 2016).
In the case of occurrence data, the standards set forth
and resources created by Darwin Core (https://dwc.tdwg.
org/) may be useful (see https://fairsharing.org/ for other
data and metadata standards). In addition to increasing
the accessibility and reusability of your data, accurate and
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descriptive metadata is also vital for improving the disco-
verability of your data (Loffler et al. 2021).

There are different types of repositories for different
purposes. The PBDB and Neotoma serve as ideal reposi-
tories for individual occurrence data, and we strongly
encourage you to input new occurrence and taxonomic
information in these repositories or other appropriate
repositories. Nevertheless, these repositories are not
intended for storing your individual project materials
such as raw data files and scripts. Further, while the
ever-growing and dynamic nature of these databases via
community crowdsourcing is a clear benefit to our field,
this is also the same reason they are inappropriate for
storing static versions of your raw data; they may be edi-
ted by other users at some point in the future (see
Rule 2). Therefore, you’ll need to identify a separate
repository for your data archive. However, navigating the
data repository landscape can be challenging. For exam-
ple, as of February 2025, the Registry of Research Data
Repositories (https://www.re3data.org/; Pampel et al. 2013)
lists over 2850 open repositories available for archiving
data, with over 85 of them covering ‘Geology and
Palaeontology’. Commonly used general repositories for
occurrence data and associated files include Dryad,
Zenodo, FigShare, the Open Science Framework (OSF),
and Pangaea (Felden er al. 2023). Institutions (e.g. Yale
University, University of Vienna) and national bodies
(e.g. UK National Geoscience Data Centre) may also offer
their own in-house data archival services. When choosing
between repository options, you should consider several
archival aspects, including longevity, licensing, accessibil-
ity, discoverability, citability, version control, cost, and
capacity.

First, you should confirm that your chosen repository
will be able to store your files for a long time (i.e. dec-
ades, at minimum). This information is often listed as
‘longevity’, ‘persistence’, or ‘retention’ within a reposi-
tory’s policies. Most repositories aim to be sustainable
and last indefinitely; however, uncertainties around fund-
ing, future costs, and technological developments mean
this may not hold true. Many repositories will be clear
about how much funding they currently have (usually in
a number of years; e.g. OSF currently states it has
50 years of funding for hosting data), with the potential
for further funding in the future. If a repository does not
list a longevity of decades or guarantee permanent host-
ing, it should probably be avoided (see Lin et al. 2020 for
further discussion).

Next, your repository should either be clear about what
copyright license your files are shared under or provide
you with a selection of copyright licenses to choose from.
For data, the licenses developed by the Creative Com-
mons should be adequate, covering public domain, attri-
bution, and non-commercial license types. In general,

datasets containing only new data are usually published
under the CCO license (‘No Rights Reserved’;
https://creativecommons.org/public-domain/cc0/), which
releases data into the public domain and makes the data
easy to reuse for other projects. For example, data in the
PBDB are released under a CCO license (Uhen et al. 2023).
On the other hand, data from the Neotoma database
(Williams et al. 2018) are made available under a CC-BY
license, meaning that the data must be attributed accord-
ingly. For sharing code, there is a wider variety of licenses
to choose from, with some of the most popular licenses
including the MIT License, Apache License, and GNU
General Public License. If you find yourself having a hard
time choosing between licenses, you can find handy
tools for choosing from Creative Commons (https://
creativecommons.org/choose/) and GitHub  (https://
choosealicense.com/).

You should also ensure that your repository will make
it easy to find and cite your data archive (Wilkinson
et al. 2016). The most common currency of academic
scholarship is citation count, which is often used as one
of the determining factors for hiring, promotion, and
funding decisions in academia, for better or worse
(Ravenscroft et al. 2017; Desrochers et al. 2018; Smith
et al. 2024). For a long time, datasets, particularly those
of occurrence data, were not citable in the same way in
which we cite publications (Payne et al. 2012; Sil-
vello 2018). Many repositories, such as Dryad, FigShare,
and Zenodo, have introduced the automatic assignment
of permanent and unique identification numbers called
digital object identifiers (DOIs) to archived datasets
(Brown 2021). Theoretically, DOIs have brought data on
par with standard publications with regards to citability
(although note that other restrictions may remain such as
limits to the total number of references imposed by jour-
nals (Payne et al. 2012) and the lack of inclusion of data
citations in many common citation indices (Silvello 2018;
Smith ef al. 2024)). Some repositories may not automati-
cally assign DOIs, but may have other ways to provide
unique identifiers. For example, GitHub (a common
repository for software and data files) does not assign
DOIs and is therefore often not a citable repository in
journal publications. However, it does allow for integra-
tion with Zenodo which will archive each ‘release’ of a
public GitHub repository and assign each archive a DOL
This also ensures static versioning of the respective code
and data files. Similarly, OSF, which can optionally pro-
vide a DOI for a public repository, can be linked to many
other storage solutions such as Amazon S3, Dropbox, and
OneDrive which are not otherwise citable. In addition to
citability, it is also important that the repository provides
a way for other researchers to discover your data. For
example, Zenodo and FigShare provide simple search
interfaces to search for datasets archived with their
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BOX 10. Deposit your data & workflow

When Robin submits the finished manuscript to Palaeon-
tology, they make sure to upload their raw dataset, the
cleaned dataset, and their R scripts to a data repository
service. Robin then also makes sure to cite the dataset DOI
in the manuscript, drawing attention to where the data is
kept. They can then sit back and wait for the (hopefully!)
positive reviews on the manuscript, knowing that they have
done their best to make sure that their research is accurate

and easily reproducible.

respective services. Note that Google Scholar historically
has explicitly not indexed datasets, but tools such as Goo-
gle  Dataset  Search  and  Science  Explorer
(https://scixplorer.org/) support finding of archived data-
sets across the web.

Finally, hosting files costs money, and therefore most
repositories have limits to the amount of storage that they
provide to individual users or for individual repositories.
For example, at the time of writing, free FigShare
accounts can only upload up to a total of 20 GB for free,
whereas Zenodo and OSF limit each free public reposi-
tory to 50 GB (with no account limits). Dryad similarly
offers a storage limit of 50 GB per repository but at a
base cost of $150 USD, though this cost can be covered
by partnerships with journals or fee waivers. Most reposi-
tories will have the option to increase these quotas for a
cost. For example, Dryad charges $50 USD for every
10 GB of storage above the base 50 GB, whereas FigShare
offers a paid premium service that enables users to
archive larger files and repositories with pricing based on
the amount of storage required. Fortunately, as men-
tioned previously, occurrence datasets tend to be rela-
tively small (<1 GB), so these free storage quotas should
be sufficient for most occurrence data repositories
(Box 10).

CONCLUSION

Large fossil occurrence datasets have revolutionized the
research questions that can be asked of the fossil record.
However, a variety of decisions and processes must be
carried out prior to conducting analyses that impact these
data and subsequent conclusions, including how we set
up projects (Rules 1-3), explore and clean data (Rules
4-8), and report our work (Rules 9-10). These steps can
be further complicated by the specificities of palaeo-
biological data, particularly those collected over long time
frames where collecting and reporting practices or
broader geopolitical shifts may impact the quality and
consistency of data being reported. Consequently, despite

data cleaning aiming to be an objective process, it is ulti-
mately the product of researchers who will make deci-
sions based on their professional expertise. In this article,
we provide general guidelines to serve as a framework to
follow for those working with and cleaning fossil occur-
rence data. Some of these guidelines may or may not be
relevant for individual projects, and they may not always
be easy to implement. However, we posit that each rule
that can be followed will ultimately provide a clearer
understanding of the decisions made to process a dataset
prior to analysis. This is an essential step to improve the
reproducibility of research; a necessary goal in the face of
a broader reproducibility crisis within science (Fidler
et al. 2017). We hope that, in following these rules, we as
a community can produce datasets that not only benefit
our own work in the present, but can assist future
researchers for many years to come by providing clear
and consistent explanations for how we have carried out
our work.
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