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Abstract: Large datasets of fossil occurrences, often down-

loaded from online community-maintained databases, are a

vital resource for understanding broad-scale evolutionary

patterns, such as how biodiversity has changed through time

and space. Such datasets, however, are not infallible and

must be ‘cleaned’ of inaccurate, incomplete, or duplicate

data prior to analysis. Researchers must decide upon the

extent, feasibility, and value of data cleaning steps to per-

form, but while guides are available for working with neon-

tological occurrences, there is currently no clear procedure

for palaeobiological data despite its unique attributes. Here,

we outline ten rules that aim to aid the process of cleaning

fossil occurrence data for downstream analysis. These rules

cover the major steps involved in processing data prior to

analysis, including project setup, data exploration and clean-

ing, and finalizing and reporting work. We provide accom-

panying examples and a vignette covering the entire data

cleaning process to demonstrate the application of each rule.

We believe that these rules will serve as a useful guideline to

support data cleaning and foster new standards for the

palaeobiological community.

Key words: palaeontology, fossil, biodiversity, reproducibil-

ity, data cleaning.

LARGE-SCALE fossil occurrence datasets have revolutio-

nized our understanding of the evolution of biodiversity

on Earth (e.g. Alroy et al. 2008; Alroy 2010, Close

et al. 2020a, 2020b) and enabled a diverse range of stu-

dies across palaeobiology, palaeoecology and conservation

(e.g. Powell et al. 2015; Pimiento et al. 2017; Dean

et al. 2019; Jones et al. 2019; Allen et al. 2020; Boag

et al. 2021; Mathes et al. 2021; Chiarenza et al. 2023).

Such datasets provide information about the temporal

and spatial distribution of organisms through geological

time, along with associated stratigraphic, environmental,

and biological data (e.g. preservation, palaeoenvironmen-

tal information, trait data). Over the last 30 years,

palaeobiology has seen the introduction of large-scale col-

laborative online databases (e.g. Neptune (Lazarus 1994),

the Paleobiology Database (Uhen et al. 2023), Neotoma

(Williams et al. 2018)) of fossil occurrences where data

are entered (or uploaded) by researchers from around the

world with a range of goals, parameters, and collection

methods. Using such databases is now commonplace

within the field, with the Paleobiology Database (PBDB)

and Neotoma both reporting over 500 associated official

publications each at time of writing (March 2025). The

scale of these databases has moved palaeontology into

the age of ‘big data’ (Allmon et al. 2018), allowing for the

interrogation of Phanerozoic scale patterns that would

have been impossible to implement previously.

Despite their value, the use of large-scale databases can

be hindered by data quality issues such as variable data

curation efforts (e.g. resolving and updating taxonomic
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opinions, updating geochronological ages), inconsistencies

during data entry, general error from those inputting

data, ambiguity in the original published documents, and

lack of familiarity with the underlying data. Resolving

these data issues at the source is challenging; such data-

bases contain millions of records but are only maintained

by a small group of volunteers who lack the necessary

resources (e.g. time, funding, or relevant expertise) to

identify and resolve incorrect records at pace. These issues

can be non-random and consequently lead to bias in

downstream analysis (Panter et al. 2020). Unfortunately,

issues related to data quality are commonplace within all

large datasets (Cai & Zhu 2015; Isaac & Pocock 2015),

and palaeobiological resources are no exception. A recent

estimate based on flowering plants (c. 19 000 records)

from the PBDB suggested that at least 6% of records

could be viewed as potentially ‘problematic’ (Zizka

et al. 2019), while another estimate based on fossil occur-

rences from the Hell Creek Formation suggested an error

rate up to 92.6% in taxonomic data (Schroeder

et al. 2022). Cleaning occurrence data is therefore critical

to ensure accurate, reliable, and up-to-date data analysis.

However, it is by no means a trivial task, particularly for

complex datasets where values may change over time (e.g.

due to updates in taxonomy or nomenclature).

Here, we offer ten simple rules as guidance to follow

when cleaning fossil occurrence data in preparation for

palaeobiological analysis (Fig. 1). Many of these guide-

lines are equally applicable for neontological occurrence

data and have previously been advocated for by ecologists

(e.g. Chapman 2005; Zizka et al. 2019; Panter et al. 2020;

Ribeiro et al. 2022). We expand upon these guidelines

and present them within a specifically palaeobiological

context. The rules are structured broadly in chronological

order to aid in carrying out an individual research pro-

ject, covering project setup (Rules 1–3), data exploration

and cleaning (Rules 4–8), and finalizing and reporting

work (Rules 9 and 10). For each rule, we provide gui-

dance on the value of its implementation and, where

appropriate, highlight useful resources. Additionally, we

demonstrate how each rule can be put into practice

within the in-text boxes and in an accompanying vignette

on crocodylian biogeography, available in Appendix S1

and at https://tenrules.palaeoverse.org/. We hope this

F IG . 1 . Graphic summary of the proposed ten rules and steps to follow when cleaning occurrence data for palaeobiological analysis.

The rules are grouped within their respective theme: project setup (Rules 1–3); data exploration and cleaning (Rules 4–8); and report-

ing and archiving (Rules 9 and 10).
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guidance acts as a helpful checklist for researchers to fol-

low when cleaning their data, and highlights the extensive

skill and knowledge often required to prepare datasets in

preparation for palaeobiological analysis. While the rules

presented here aim to be of use to the broader commu-

nity, our intention is to specifically support researchers

getting started with analyses using fossil occurrence data.

As such, we assume no former knowledge on the subject,

and start by defining fossil occurrence data and data

cleaning.

WHAT IS FOSSIL OCCURRENCE DATA?

Fossil occurrence data comprise records of the presence of

a particular taxon at a unique location in space and geolo-

gical time. This is distinct from specimen-level data, which

provides information about a specific fossil specimen. For

example, if three specimens of Tyrannosaurus rex are pre-

sent in the same geological bed at a single location, an

occurrence-level dataset would record just one occurrence

of T. rex. This is also distinct from (relative) abundance

data which represents the actual number (or proportion)

of individuals in a given area. Typically, occurrence data

will include information about the observed organisms

such as detailed taxonomy (e.g. scientific name and taxo-

nomic affiliation), location (e.g. modern and/or palaeo-

geographic coordinates), geological context (e.g. bed,

member, formation) and age (e.g. age, epoch, period, era,

eon), and may also contain various associated metadata

(e.g. references). From a user perspective, fossil occurrence

data are most frequently organized as a single wide-format

data table (Box 1, below) where each column represents a

unique field and each row represents a unique occurrence

record. From a user-perspective this is a common struc-

ture, but fossil occurrence data are regularly hosted in

online databases as a set of relational data tables, linked

through unique identifiers.

Fossil occurrence data can be sourced from a variety of

online databases such as the PBDB (https://paleobiodb.

org/#/) (Uhen et al. 2023), Neotoma (https://www.

neotomadb.org/) (Williams et al. 2018), Triton (Fenton

et al. 2021), Global Biodiversity Information Facility

(https://www.gbif.org/), and the Geobiodiversity Database

(http://geobiodiversity.com) (Fan et al. 2013). An exhaus-

tive list of other data sources can be found in Dillon

et al. (2023, suppl. table 1).

WHAT IS AND IS NOT DATA
CLEANING?

Data cleaning is the process of fixing or removing incor-

rect, duplicate, or incomplete data present within a data-

set (Chapman 2005). This process typically involves

checking that essential fields like taxonomic names, loca-

tion, and stratigraphic information contain accurate, con-

sistent, and complete information. Common steps for

BOX 1. Choose the right data for your question

Robin is starting a project looking at the palaeodiversity of crocodiles through time, assessing their biogeographic patterns

during the Palaeogene. They decide to download the necessary data from the PBDB, where Crocodylia are reasonably well

represented for this time interval and where relevant information (e.g. taxonomic, geographic, age) is available. When

downloading these data, Robin sets the time interval as ‘Paleogene’ and the taxa to include as ‘Crocodylia’, also making sure

to only include body fossils in the download and therefore avoiding the potential for ichnotaxa (morphologically-distinct

trace fossils) or ootaxa (morphologically-distinct egg fossils) in the dataset as these often carry large uncertainty in

taxonomic affiliation. As they are interested in biogeographic patterns, Robin also makes sure to include information

related to geographic coordinates, such as both modern and palaeo-latitude and longitude. They also want to assess the

association between Crocodylia occurrences and the number of Crocodylia-bearing geologic formations through time, so

they make sure that geological information is included within the download.

Example occurrence dataframe of ‘Crocodylia’ fossil occurrences from the PBDB (https://paleobiodb.org/) demonstrating

the structure of a wide-format dataframe.

occurrence_no collection_no accepted_name max_ma min_ma lng lat . . .

40163 3113 Crocodylia 59.2 56 �74.68 39.97 . . .

40167 3113 Gavialoidea 59.2 56 �74.68 39.97 . . .

40168 3113 Gavialoidea 59.2 56 �74.68 39.97 . . .

. . . . . . . . . . . . . . . . . . . . . . . .
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palaeobiological datasets may involve correcting spelling

errors in taxonomic names, updating ages of geological

formations, or investigating and resolving occurrences

suspected to contain inaccurate information. Within our

definition of data cleaning, we exclude the use of filtering

to remove data outside the scope of the study, whether

that be temporally, spatially, environmentally, taxonomi-

cally, or by other criteria (see Table 1). For instance, if

investigating the evolution of Phanerozoic terrestrial bio-

diversity, removing marine organisms from the occur-

rence dataset would constitute data filtering. However, if

a fossil occurrence or taxon had been mistakenly coded as

a marine organism (e.g. with crocodylomorphs) when it

was in fact terrestrial, fixing this issue would constitute

data cleaning (e.g. Mannion et al. 2015, 2019).

RULE 1: CHOOSE THE RIGHT DATA
FOR YOUR QUESTION

Selecting the right data is a crucial first step in addressing

your research question (Box 1). Failure to do so can lead

to wasted effort in data cleaning, biased results, or mis-

leading conclusions. The data required to address a

research question depends on the scope of the study,

whether it involves taxonomic diversity, biogeographic

patterns, evolutionary rates, ecological reconstructions, or

some other thematic area. Before gathering data, whether

through fieldwork or using existing databases, researchers

must determine what fields, resolution (e.g. taxonomic

rank, chronostratigraphic level), and coverage (e.g. tem-

poral, spatial, environmental) are required for their speci-

fic inquiry. During this process, researchers should

carefully consider their tolerance for errors and whether

flexibility related to data resolution and coverage (e.g.

taxonomic, temporal, or geographic sampling) may be

useful, or introduce unnecessary biases and/or analytical

noise. For example, are the same macroevolutionary or

ecological trends still identifiable at coarser taxonomic

levels or temporal resolutions (e.g. Sepkoski 1997; Pan-

dolfi 2001; Hendricks et al. 2014)? Can macroecological

trends be reliably reconstructed given the available spatial

sampling (e.g. Darroch et al. 2020; Jones et al. 2021;

Maidment et al. 2021)? Is sufficient granularity available

to determine which environments favour high diversifica-

tion (e.g. Kiessling et al. 2010)? While data-specific ques-

tions are important, defining a research question can be

an iterative process and can be refined to meet what data

is available, rather than abandoning a project altogether.

This refinement may be necessary to ensure analyses are

both robust and relevant, as well as to reduce bias and

increase the reliability of palaeobiological interpretations.

Many steps exist in identifying the right data to address

a research question, and often vary between research

questions. Nevertheless, some are shared across palaeo-

biological studies. The initial steps for data selection often

include defining the target group (be that taxonomic,

geographical, temporal, etc.) and the level of data resolu-

tion required. Including data at inappropriate resolutions

can either dilute meaningful signals (if too broad) or

introduce unnecessary noise (if too fine-grained), particu-

larly if taxonomic or temporal assignments are uncertain

or in flux (e.g. Paterson 2020). For example, studies on

species-specific ecological interactions or evolutionary

trends require species-level data resolution (e.g. Kempf

et al. 2020; Raja et al. 2021; Godbold et al. 2025),

whereas broader macroevolutionary patterns may be

addressed at the genus or family level (e.g. Sahney & Ben-

ton 2008; Kiessling & Kocsis 2015; Mannion et al. 2015;

Dimitrijevi�c et al. 2024; Drage & Pates 2024). This can be

TABLE 1 . A list of terms used in this article and their respective definitions.

Term Definition

Data cleaning The process of fixing or removing incorrect, duplicate, or incomplete data present within a dataset

(e.g. incomplete locality information, misspellings)

Data filtering The process of removing data present within a dataset that is beyond the scope of the study

(e.g. taxonomically, geographically, temporally)

Data imputation The process of replacing missing values within a dataset with modelled values based on the existing observed

values

Data preparation The process of preparing and transforming raw data so it is suitable for analysis and processing

Duplicate data Non-unique data records

Data outlier A data record value that notably deviates from other comparable data records

Inconsistent data Non-uniform or non-standardized data record values

Metadata Structured information that describes, explains, locates, or makes it easier to retrieve, use, or manage data

Raw data Data in its original unaltered state as collected from its source

Reproducibility The ability to obtain consistent results using the same data and analyses

Reusability The ability to reapply data or code for purposes other than their original purpose

Transformed data Data that has been altered or manipulated in some way from its original state

4 PALAEONTOLOGY , VOLUME 68
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dependent on the taxonomic group of choice; for

instance, there may be insufficient occurrences identified

at the species level to enable analysis at this resolution,

such as commonly the case with fossil pollen (e.g. Goring

et al. 2013). When considering taxonomic resolution,

researchers might also assess whether their study will ben-

efit from incorporating multiple taxonomic groups. While

focusing on a single clade may allow for taxon-specific

trends to be identified, integrating data from multiple

lineages can provide insights into ecosystem-wide

responses and provide higher data coverage (e.g. Song

et al. 2020). Nevertheless, increasing taxonomic breadth

should be done deliberately, as different groups may have

distinct preservation biases or ecological niches, compli-

cating direct comparisons (e.g. Fern�andez-Jalvo et al. 2011;

Kiessling & Kocsis 2015; Dean et al. 2019; Shaw

et al. 2020, 2021). Studies conducted at wide taxonomic

breadth may therefore provide a large-scale picture of the

clade included, but risk averaging across the nuanced

trends of the individual subclades within it.

Temporal resolution is equally important as taxonomic

resolution. Overly broad temporal bins can obscure evo-

lutionary or ecological signals, while excessively fine bins

may introduce sampling noise and/or empty bins if

observed fossil occurrences are sparse (Olszewski 1999;

Dean et al. 2020; Fan et al. 2020). For example, analysing

faunal turnover leading up to the end-Cretaceous mass

extinction within a regional setting requires

well-constrained stratigraphic placements, rather than

general assignments to the Late Cretaceous (Dean

et al. 2020). Consequently, researchers should consider

whether increasing temporal precision is truly necessary

for their study or whether it will introduce more noise

than clarity.

Geographic resolution and coverage should also align

with the research question. A global-scale study on biodi-

versity change must incorporate data from diverse regions

rather than being limited to well-sampled areas like North

America and Europe (Vilhena & Smith 2013). If data

from key regions are unavailable due to sampling biases

(e.g. poor fossil records or insufficient sampling effort),

researchers should reconsider whether their question can

still be adequately addressed, then explicitly acknowledge

this limitation if so. This assessment should be made

before cleaning data, ensuring that all necessary regions

are included and that limitations are acknowledged in the

study design. Failure to do so can result in global signals

being obfuscated by regional trends, or highlight apparent

‘global’ trends that are actually sampling artefacts (Allison

& Briggs 1993; Vilhena & Smith 2013; Brusatte et al. 2015;

Jablonski & Shubin 2015; Antell et al. 2020; Close

et al. 2020b; Flannery-Sutherland et al. 2022a). Similarly,

the accuracy and source of geographic coordinates asso-

ciated with fossil occurrence data should be carefully

considered to avoid misleading inferences (e.g. under or

overestimation of geographic range size). For instance,

geographic coordinates may be recorded via a handheld

Global Positioning System device, inferred from a

description of the locality, or estimated using the centroid

of the geopolitical unit (e.g. country) the occurrence was

found in.

If the planned study uses existing data rather than col-

lecting new data (e.g. from a publication or online data-

base), then selecting the right data source is a critical

step. Different databases serve different purposes, and the

choice depends on the research question and required

resolution and coverage. The PBDB is a widely used

resource for fossil occurrences, providing broad-scale

taxonomic, geographic, and stratigraphic data (Uhen

et al. 2023) that is best suited for large-scale palaeobio-

geographic and macroevolutionary studies. The Neotoma

Paleoecology Database specializes in Quaternary palaeoe-

cological data, including pollen, vertebrates, and geo-

chemistry, making it ideal for studies on more recent

environmental changes (Williams et al. 2018). The Geo-

biodiversity Database (GBDB) is a taxonomic, strati-

graphic, and geographic database providing occurrence,

collection, and strata data within geological sections (Fan

et al. 2013) that is well-suited to high-resolution temporal

analyses (Fan et al. 2020). The Global Biodiversity Infor-

mation Facility (GBIF) and Ocean Biodiversity Informa-

tion System (OBIS) include modern and fossil

occurrences/specimens, which can be leveraged to inte-

grate information from palaeontological and neontologi-

cal datasets (e.g. Kiessling et al. 2012; Lima-Ribeiro

et al. 2017; Jones et al. 2019; Pilotto et al. 2021; Chiar-

enza et al. 2023; Hodgson et al. 2025). Many other poten-

tial data sources exist and a comprehensive list can be

found in Dillon et al. (2023, suppl. table 1). Finally,

cross-referencing and combining data from multiple data-

bases can be important for enhancing data reliability and

completeness, although particular care is needed to ensure

datasets and collection approaches are compatible, and

that this does not create duplicates. Depending on the

scope of the study, manually double-checking data against

the original source may also be desired, or indeed

required. However, this may not be feasible or of major

concern for some studies, such as a Phanerozoic-scale

diversity analysis (e.g. Adrain & Westrop 2000). Never-

theless, researchers should consider the full range of data

sources available and their data quality, accessibility, reso-

lution and coverage before committing to a dataset.

RULE 2: KEEP RAW DATA RAW

Once you have identified or collected appropriate occur-

rence data for the desired research question, a digital

JONES ET AL . : TEN RULES FOR CLEANING OCCURRENCE DATA 5
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copy must be obtained. This digital copy is defined as

raw data and remains so if it does not undergo any form

of transformation, leaving the structure and composition

of its fields and records identical to the data at the point

of acquisition. As such, raw data represents the informa-

tion available to the researcher at that moment in time

(see Box 2). Although data cleaning is likely to be neces-

sary prior to analyses, it is essential to keep a raw copy

alongside any cleaned data. Keeping raw data raw is cru-

cial for two reasons. The first is to allow identification of

errors inadvertently introduced during data transforma-

tion, by ensuring that the original data remains available

for cross-reference. The second is to enable scientific

reproducibility, by ensuring that exactly the same data

that informed an analysis is available for scrutiny and

reuse by future researchers.

Raw data is not necessarily primary data. For example,

a fossil occurrence dataset sourced from the supplemen-

tary information of a published article, or a static data

repository (e.g. Zenodo), may constitute first-hand field

observations, or a compilation from previous literature

(as is usually the case for large online databases). What

matters here is that the raw data are unedited with

respect to the project currently being conducted.

Upon acquisition, raw data files should be immediately

stored in a dedicated directory using a simple, descriptive

file name, and in a format that preserves its structure and

integrity (Borer et al. 2009). If a dataset contains entries

with non-ASCII-printable text, such as accented charac-

ters (e.g. Candel�aria Formation), then it may also be

appropriate to ensure that the file encoding will preserve

this text as accurately as possible (e.g. a .csv file with

UTF-8 encoding). If compression is required to meet

memory restrictions, then a lossless format should also be

used to avoid degradation of the raw data (e.g. a zip

folder).

Manually opening raw data files should be avoided

where possible; different software programs and versions

may (and often do) perform automatic formatting upon

opening, potentially resulting in mass data alteration

(Perkel 2019). A file may be stored in a read-only format

to prevent inadvertent alteration of the raw data (Broman

& Woo 2018), with backups stored in other locations to

further guard against future losses or alterations (Wilson

et al. 2017). To avoid editing raw data, a researcher can

perform manual edits on a working copy of the static file,

or by reading the file data into a programming environ-

ment where scripted edits can be made to the temporary

copy in the computer’s memory using a programming

language (e.g. R or Python). In the latter case, the script

then also functions as a precise log of any alterations to

that dataset (see Rule 3; Appendix S1) (Borer et al. 2009).

Understandably, a researcher may wish to make small,

practical alterations to the raw data itself (e.g. renaming

column headers, manual correction of singular or over-

whelmingly rare typographical errors) or performing sim-

ple reformatting (e.g. extraction of relevant columns or

data sheets) to improve ease of downstream use. In most

cases, such procedures can be scripted and manual

manipulation of the raw data should still be avoided

(Borer et al. 2009). If manual editing of the raw data is

essential, this should be kept to the minimum possible,

and a comprehensive description of these changes should

be documented (e.g. as a plain text file) and kept along-

side the static raw data file.

Every effort should be made to ensure that any raw

data acquired for analyses remains static and accessible

for future users. New data are constantly being added to

online community databases (e.g. PBDB and Neotoma),

while existing entries can be revised, merged, or deleted

for a range of reasons including (but by no means limited

to) human error, changes in taxonomic opinion, and

refined age dating. As such, online community databases

are not strictly static repositories, as a future user may

obtain a different dataset from that of a past user, even

with identical download parameters. Some databases pro-

vide a service to archive a copy of a raw data download

on request (e.g. PBDB; Uhen et al. 2023), and others

automatically do so (e.g. GBIF), providing a citable

unique digital object identifier (DOI). However, it should

not be taken for granted that raw data being archived at

the source will always be available, whether that be an

online database or the supplementary files of a journal

article. Raw data may become unavailable in the future

due to the loss of funding and maintainers, file corrup-

tion, and journals becoming non-operational. To further

guarantee the long-term availability of raw data, raw data

should be archived in a suitable open-access repository

whenever possible (see Rule 10).

RULE 3: DOCUMENT YOUR
WORKFLOW

In almost every data-oriented project, researchers carry

out some form of filtering, cleaning, formatting, or other

BOX 2. Keep raw data raw

Robin downloads the occurrence data as a ‘.csv’ file to

their computer, checking the option to ‘include meta-

data at the beginning of the output’ to preserve

information about the download. They then immedi-

ately copy the downloaded dataset to a separate raw

data folder, and save it as ‘read-only’ to make sure that

it can’t be accidentally manipulated. The raw data file

has a total of 886 occurrences.
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operations to transform raw data into a workable and

appropriate state for analysis (see Rules 4–8). Document-

ing these steps is essential to ensure transparency, repro-

ducibility, and a clear understanding of how data have

been processed (Stoudt et al. 2021). Together, these steps

can be described as a ‘workflow’, which represents a

sequence of tasks or processes that are systematically

organized to achieve a specific purpose (Box 3). In a

workflow, each step often depends on the previous one,

and tasks are completed in a particular order to maintain

efficiency, consistency, and accuracy. Workflows can be

simple, involving just a few steps (e.g. restructuring of

data), or complex (e.g. data cleaning and imputation),

encompassing multiple transformations. Having a clearly

defined workflow can help streamline data processing

steps, reduce errors, and enhance reproducibility by pro-

viding a clear, repeatable structure for completing work.

Documenting your workflow improves the transpar-

ency, reproducibility, and overall value of your research

by serving as a reference or guide for repeat, follow-up,

or new analyses; whether by the individual who docu-

mented the workflow, a collaborator, or any member of

the research community. This can be particularly vital

when going through the review process or onboarding

new team members and collaborators. Documented work-

flows can also serve as a key avenue for transferring

knowledge about data processing decisions through pre-

serving the ‘what’ (i.e. what data is being transformed),

‘why’ (i.e. why is the data being transformed), and ‘how’

(i.e. how is the data being transformed).

Workflows for cleaning occurrence data in palaeo-

biology fall into two categories that can be used indepen-

dently or in combination: (1) manual transformation

(e.g. hand-typed step-by-step actions in spreadsheet soft-

ware); and (2) programmatic transformation (e.g. use of

automated functions or pipelines within a script of a pro-

gramming language). Manual manipulation of occurrence

data often takes place in spreadsheet software such as

Microsoft Excel, Google Sheets, LibreOffice Calc, or Apple

Numbers, but can also be implemented in text editors.

While transforming data in such software can often be

more intuitive and user friendly than through program-

matic solutions (e.g. in R or Python), the process of doc-

umenting the exact steps taken when transforming raw

data can be laborious and prone to a lack of clarity. Con-

versely, programmatic data cleaning provides a clear and

traceable workflow, recording the steps taken to clean the

data. Through commenting code, additional context for

specific data cleaning steps can also be provided to justify

decisions made (e.g. taxonomic updates, exclusion of a

specific data point), guide future users, or aid the original

developer when revisiting a project. In addition, several

formal workflow tools exist that can be leveraged to sup-

port data cleaning (e.g. occTest; Serra-Diaz et al. 2024)

and workflow documentation (e.g. SnakeMake (K€oster &

Rahmann 2012; M€older et al. 2021) and Galaxy (Giardine

et al. 2005; The Galaxy Community 2024)). To achieve

sufficient code proficiency to the extent that a fully pro-

grammatic workflow can be developed, however, is not

necessarily easy or efficient, and can be a steep learning

curve (Brousil et al. 2023). While we generally advocate

for a code-based approach to occurrence data cleaning

herein, succinctly described manual data cleaning steps

can be of equal value and may even be more accessible to

the broader community. For researchers with less famil-

iarity with programmatic data transformation (e.g. regex,

text parsing), resources are also available for generating a

reproducible script of manual data transformation (e.g.

OpenRefine). Notably, even in workflows which are

entirely code-based, some elements may still require a

degree of manual notation. For instance, when acquiring

secondary data (e.g. downloading a dataset), it can be

important to document the date of download, which may

not inherently be obvious within an entirely code-based

pipeline. Through the implementation of Rule 2 and

Rule 10, the exact data cleaning that has taken place can

be inferred through file comparison software (even with

manual workflows). Importantly, neither code-based or

manual workflows are immune to the possibility of intro-

ducing errors during data cleaning: check-in steps and

proof-reading should form an integral part of any

workflow.

RULE 4: EXPLORE YOUR DATA

After obtaining the raw data to address your research

question and deciding how to document your workflow

(see Rules 1–3), a practical next step is to explore your

data. Exploratory data analysis involves using graphical

tools and basic statistical techniques to better understand

BOX 3. Document your workflow

Robin then begins to set up their project. They make a new

project in RStudio, which they also link to their GitHub

account to ensure that they have version control and

therefore a record of all the steps taken when developing

their code and assessing their data. They begin to set up

their R workflow, making sure to have a clear overarching

structure in their project, making use of section labels.

Robin also begins to set up their manuscript file,

documenting the steps taken so far in the ‘Methods’

section. They will continue to update this with relevant

information as they carry out their analysis, and will

make sure to add inline comments to the R script

explaining what they’re doing and why.
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the characteristics of your dataset, identify anomalies, and

uncover patterns (Tukey 1977; Quinn & Keough 2002).

This step is important for a variety of reasons. First,

exploring your data can reveal the structure and attributes

of your dataset, such as variable types and distributions,

numbers of observations, and spatial or temporal depen-

dencies between observations. Second, it can highlight

relationships between variables to guide future analyses

and maximize statistical insights. Third, exploring your

data can help you select appropriate statistical tools and

verify their assumptions to avoid type I (false positive)

and II (false negative) errors that might lead to incorrect

conclusions (Zuur et al. 2010). In doing so, exploratory

data analysis can illuminate aspects of your data that

should be accounted for when constructing models, such

as non-normality, collinearity or interactions between

covariates, and spurious correlations. Exploratory data

analysis can also flag systematic biases (e.g. taphonomic

or sampling biases) that warrant careful consideration

when interpreting your results. Lastly, exploring your data

can reveal missing values (see Rule 5), outliers (see

Rule 6), inconsistencies (see Rule 7), duplication

(see Rule 8), and other unusual or erroneous values that

require cleaning. Together, exploratory data analysis is

used to assess the quality and completeness of your data-

set and gauge whether it can provide a meaningful and

representative sample to address your research question.

Without this step, you run the risk of applying inap-

propriate statistical techniques or making faulty

inferences.

Exploring your data is a creative and iterative process

that is driven by asking questions about your dataset. As

such, exploratory data analysis workflows will inherently

be dataset dependent, as will the level of scrutiny applied

when cleaning the data. Nonetheless, the core data

exploration steps often include the following: (1) creating

data summaries; (2) visualizing distributions of individual

variables; and (3) visualizing relationships between vari-

ables. These data exploration steps, together with data

cleaning, will often take up the majority of the time you

spend analysing your data (Zuur et al. 2010). However,

starting simple and being thorough upfront can ulti-

mately produce a more robust and insightful data

analysis.

A first step when becoming familiar with your dataset

is to produce descriptive summary statistics of the central

tendencies and variances of groups in the data. Histo-

grams are typically used to plot the distributions of indi-

vidual variables, flag outliers, determine whether there are

high numbers of zeros, and assess normality (along with

QQ-plots and formal tests such as Shapiro–Wilk). A com-

bination of scatterplots, correlation matrices, box plots,

ordinations (e.g. principal component analysis), and clus-

ter analyses should then be used to visualize bivariate and

multivariate relationships between variables, depending

on the data types present (see Zuur et al. 2010). These

graphical tools can reveal interesting patterns between

variables and highlight covariates that might be important

to include as predictors in more complex models. This

process can also help refine the hypotheses being tested,

especially given the observational nature of palaeo-

biological data, yet caution should be exercised to avoid

circularity (Hammer & Harper 2024). Circular reasoning

can arise when the same variable is used to both define

and test for differences between groups, such that the

outcome is guaranteed by the analytical approach (Makin

& Orban de Xivry 2019). For example, you might notice

during exploratory data analysis that your occurrences

cluster in a particular way. If you then use those clusters

to filter your data and define groups (e.g. clades that

either increase or decrease in richness through time), you

run into issues if you then examine differences in diver-

sity across those groups because the statistical inference is

tied to your grouping criteria; it’s a self-fulfilling pro-

phecy. For more in-depth treatment of these tools, Zuur

et al. (2010) outlined protocols for exploratory data ana-

lysis in ecology, which can readily be adapted to palaeo-

biological data (see Birks et al. 2012).

Each of these steps can be scripted in R, other

computer programming languages, or even in spreadsheet

software, and used to create a transparent and reproduci-

ble log of the exploratory data analysis workflow (see

Rule 3), what was discovered, and how these initial infer-

ences shaped the final analysis. To wrangle data and gen-

erate basic summary statistics, the dplyr (Wickham

et al. 2023a) and tidyr (Wickham et al. 2024) packages

(part of the tidyverse; Wickham et al. 2019) as well as

skimr (Waring et al. 2022) are particularly helpful. These

packages can be used in tandem with palaeoverse (Jones

et al. 2023), which contains functions designed for work-

ing with fossil occurrence data such as temporal or spatial

binning, range calculations, identifying unique taxa, and

flagging misspellings of taxonomic names. For example,

you might want to assess how many bins you have data

available for. To visualize relationships between variables,

ggplot2 (Wickham & Sievert 2009), psych (e.g. ‘pairs.pa-

nels’ function; Revelle 2024), GGally (e.g. ‘ggpairs’ func-

tion; Schloerke et al. 2024), corrplot (Wei & Simko 2024),

and DataExplorer (Cui 2024) offer useful graphical func-

tions. A multitude of online resources exist to help build

competency in programming as you explore your data,

including R for Data Science (Wickham et al. 2023b),

R Graphics Cookbook (Chang 2018), and Posit cheat

sheets (https://posit.co/resources/cheatsheets/). Impor-

tantly, we recommend commenting code and keeping a

record of exploratory data analysis results and visualiza-

tions to refer back to as you develop analyses and com-

municate findings (see Rule 9) (Box 4).
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RULE 5: IDENTIFY & HANDLE
INCOMPLETE DATA RECORDS

When exploring your dataset by carrying out exploratory

data analysis (see Rule 4), you may encounter ambiguous,

incomplete, or missing data entries. These incomplete or

missing data records can occur due to various reasons. In

some cases, the data truly do not exist or cannot be esti-

mated due to issues relating to taphonomy, collection

approaches, or biases in the fossil record (e.g. information

derived from highly fragmentary fossils, historical collec-

tions without associated geological or chronological infor-

mation, or underrepresentation of certain taxonomic

groups). In other cases, discrepancies may arise because

data were collected when definitions or contexts differed,

such as shifts in geopolitical boundaries and country

names over time (e.g. an occurrence that only has ‘Cze-

choslovakia’ listed as the country of origin cannot be pre-

cisely located today). Additionally, data may be

incomplete for some records, but can be inferred through

other available data (e.g. inferring country of origin

through geographic coordinates). Although an intuitively

common issue in palaeobiology given the uneven and

incomplete nature of the fossil record (Raup 1972; Allison

& Briggs 1993; Cherns & Wright 2000; Vilhena

& Smith 2013; Dean et al. 2019), missing information can

bias the results of palaeobiological studies (e.g. Kearney &

Clark 2003; Norell & Wheeler 2003; Wiens 2003; Marshall

et al. 2018; Jones et al. 2021; Dean & Thompson 2025).

Occurrence data are inherently based on the existence of

a particular fossil, but missing data associated with that

fossil occurrence can also affect analyses that rely on

that associated data (e.g. studies examining environmental

associations will be impacted by missing environmental

data).

Depending on your research goals and the data

required to address your questions, incomplete entries

may either be removed through filtering or addressed

through imputation techniques. Data imputation

approaches can be used to replace missing data with

values modelled on the observed data using various meth-

ods (Gendre et al. 2024). These can range from simple

approaches, like replacing missing values with the mean

for continuous variables (e.g. morphometric measure-

ments or associated climatic variables), to more advanced

statistical or machine learning techniques (see Demir-

tas 2018; Van Buuren 2018; Haghish 2022). If you do

decide to impute missing data, it is essential that this pro-

cess and its effects on the dataset are clearly justified and

documented (see Rule 3) so that future users of the data-

set or analytical results are aware of these decisions.

Although missing data can reduce the statistical power of

analyses and bias the results, imputing missing values can

introduce new biases, potentially also skewing results and

interpretations of the examined data (Newman 2014).

Therefore, if a dataset has sufficient data to test the

desired hypotheses, or if incomplete data entries cannot

be imputed reliably, these entries should be deleted in

their entirety during the data cleaning process, while

clearly documenting how entries were chosen for exclu-

sion (see Rule 3). Alternatively, some data analyses allow

for incomplete data entries (e.g. non-metric multidimen-

sional scaling), and so where these methods are appropri-

ate, you may choose to retain your incomplete data

entries as-is.

To decide how to handle missing data, start by identi-

fying the gaps in your dataset, which are often repre-

sented by empty entries or ‘NA’ (meaning ‘not available’

or ‘not applicable’). For imputing missing values, numer-

ous methods and tools are available in your coding lan-

guage of choice, such as missForest (Stekhoven &

Buehlmann 2012), mice (Van Buuren &

Groothuis-Oudshoorn 2011), and kNN (Kowarik &

Templ 2016). Additionally, the R packages TDIP (Gendre

et al. 2024) and mlim (Haghish 2022) integrate various

imputation and error identification methods, facilitating

method comparison. Many detailed open-access refer-

ences exist with which to compare the underlying meth-

odologies of imputation approaches (e.g. Blomberg &

Todorov 2025), and which provide guidance on the dif-

ferent missing data types and how to choose imputation

methods and parameters (e.g. see Van Buuren 2018).

Removing missing data can be straightforward when

working with small datasets. For manual removal, tools

such as spreadsheet software can be sufficient (although

see Rule 3). In R, built-in functions such as

BOX 4. Explore your data

To get an idea for how their data is distributed and its

various characteristics, Robin first decides to generate some

basic summary statistics and plots. As they are interested in

assessing palaeodiversity, Robin checks the proportions of

the different taxonomic ranks in the dataset. They find that

c. 28% of the occurrences (about 250 in total) are assigned

to the species level, and that a further c. 28% are assigned to

genera. Because of this, they think it might be wise to carry

out palaeodiversity analysis at the rank of genus to ensure

that they have enough data to find meaningful patterns.

However, they will decide upon this after doing a more

thorough assessment of the data. They also look at the

geographical distribution of occurrences by looking at their

associated country codes, finding that Palaeogene croco-

diles are found in a total of 46 countries. However, after

sorting these data, they find this number drops to 45

countries. Something odd has happened that they will have

to investigate during future data cleaning steps.
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complete.cases() and na.omit() quickly identify and

remove rows containing missing values. The tidyr package

also provides the drop_na() function for this purpose

(Wickham et al. 2024). However, incomplete data entries

can also be of use without imputation or removal; for

example, the tax_unique() function from the palaeoverse

R package (Jones et al. 2023) can flag ‘cryptic diversity’

that arises due to taxa not assigned to a specific species

or genus, but which represent the only appearance of that

clade in the geographic region or time period of choice

(e.g. Mannion et al. 2011) (Box 5).

RULE 6: IDENTIFY & HANDLE
OUTLIERS

Outliers, data points which lie to the extremes of the dis-

tribution of all data or otherwise deviate from compar-

able data points, will become readily apparent when

exploring your dataset (see Rule 4). Outliers may arise

from a mistake in data entry, or because the value repre-

sents a genuine anomaly compared to the other available

data. Identifying outliers is therefore doubly useful: it is a

way of highlighting potentially suspect data for subse-

quent checking, and also allows us to better understand

the range of values our data holds. Outliers are particu-

larly important when an analysis investigates the maxi-

mum and minimum values of a field, or for calculations

involving confidence intervals, as unusually small or large

values can influence such analyses more strongly than

other data points.

Most data types are amenable to some form of outlier

analysis. For numerical data, this usually involves identi-

fying the points lying at the extremes of the range of

values. A simple example of this is creating a box plot,

where typically the ‘whiskers’ are quantified based on

some range of values describing the data, and any points

lying outside of this range are plotted as individual out-

liers. Here, the choice of cut-off is very important, and

many different methods exist for setting outlier cut-off

points that might be applicable in different situations

(Aggarwal 2017). The shape of the distribution of the

data also matters. Many methods of generating confi-

dence intervals assume that data are normally distributed,

but this is often not the case for real-world biological or

palaeobiological datasets, and should be borne in mind

when selecting a method. For categorical data, a more

appropriate method of identifying outliers might be

examining abundance counts for the different categories

to identify those with only a few instances. On such

topics, we recommend referring to classic textbooks on

statistics for (palaeo)ecologists (e.g. Hammer &

Harper 2024).

The types of data commonly present in occurrence

datasets can be checked for outliers in a multitude of

ways. Checking age data for outliers can be very impor-

tant: if we wish to quantify the temporal or stratigraphic

range of a taxon, then a misplaced data point could fal-

sely prolong our inferred range by millions of years. This

is true for both numerical (e.g. ‘250 Ma’) and categorical

(e.g. ‘Triassic’) forms of age data. Collecting tip or node

age priors for phylogenetic inference is a common use of

such data for which identifying outliers can be particu-

larly important for downstream analyses (Mulvey

et al. 2025). For such questions, the data resolution at

which outliers are quantified should be carefully consid-

ered: for example, the age of an occurrence may appear

anomalous for a specific species, but not within the con-

text of the wider genus. This difference may alter the

appropriate course of action for dealing with such data

points. An example of a palaeontology-specific outlier

detection method is the ‘Pacman’ method (Lazarus

et al. 2012), which uses ‘known’ age distributions for

biostratigraphic markers to identify outliers in numerical

stratigraphic data. This approach, and other relevant

functions, are available in the fossilbrush R package

(Flannery-Sutherland et al. 2022b).

Exploring data to search for taxonomic outliers can

also be a helpful way of identifying mistakes. In the case

that a collection of fossils is stated to contain nine spe-

cies of bivalve and one species of shark, it is worth

checking that the shark occurrence is correct. Otherwise,

for example, it could be that the shark species actually

has the same name as a bivalve species and has been

miscategorized, or that the shark species is a misspelling

(an example of this being the genus Megalodon, a

bivalve from the Jurassic, being confused with Otodus

megalodon, the giant shark from the Neogene). For

BOX 5. Identify & handle incomplete data records

Robin next begins to systematically explore their data in

more detail, first making sure that the occurrences aren’t

missing vital information. As they are assessing

biogeography, they first find any occurrences that are

missing palaeocoordinates and decide to remove them

from the dataset rather than trying to estimate new

palaeocoordinates using available tools. After removing

these data, they check to make sure that all of the

occurrences have both modern and palaeocoordinates,

then decide to revisit the issue of missing data within the

‘country code’ field. They find that there are two

occurrences which have a value of ‘NA’; normally this

would mean missing data, on further checking their

geographic position using modern coordinates, Robin

finds that they are actually from Namibia (i.e. NA). It

seems R has misconstrued these records!
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multivariate data (e.g. geographic coordinates), convex

hulls can be generated to identify points that form the

corners of the hull, and therefore lie at the extremes of

the data. The distance of these points from the rest of

the data can then be quantified, with those at the great-

est distance highlighted for further checking. However, it

is worth considering that geographic coordinates are

often subject to limits which can artificially create clum-

piness in the data. At a global scale, the distribution of

the continents serves as a major control on the potential

spread of both species and fossil preservation, and an

apparently large distance between any two data points

may simply represent an area of ocean between two

continents. CoordinateCleaner (Zizka et al. 2019) is an R

package designed specifically for cleaning the geographic

coordinates of occurrence data, including via outlier

detection.

It is also possible to design downstream analytical

workflows with outliers in mind, which may be particu-

larly appropriate when it is unclear whether outliers

should be removed from a dataset or not. For example,

a simple strategy is to calculate and use the 90th or

95th percentile of the data instead of maximum values,

or median values over mean values. More complex alter-

natives include bootstrapping, jackknifing, and related

methods implement repeated subsampling of a dataset;

this has the overall effect of amplifying the signal of

common data values, and diminishing the signal of rare

data values (which typically include any outliers). This

can reduce the influence of outliers on the results with-

out completely excluding these values from analysis

(Box 6).

RULE 7: IDENTIFY & HANDLE
INCONSISTENCIES

When carrying out exploratory data analysis on your

dataset (see Rule 4), it is also likely that inconsistencies

will become apparent. Inconsistencies refer to deviations

in the format, structure, or definitions of data values in a

dataset, and they can occur in all types of variables (e.g.

numerical, categorical). Inconsistencies can represent

information that is definitively incorrect (e.g. a taxonomic

name spelt both correctly and incorrectly in different

records) but can also arise from variation of input into a

dataset. This could be due to inconsistencies in standards

or unclear definitions of variables (e.g. alternative, but

correct, spellings of the same geological formation or dif-

ferent date formats being used in the same column), stan-

dards which have changed over time (e.g. a stage being

given new age boundaries as a result of increased accu-

racy of new radiometric dates) or conflicting scientific

opinions (e.g. two fossils of the same species input under

different taxonomic names by researchers holding differ-

ing opinions). Although it is common for inconsistencies

to apply across different rows within a single column of

variables, they can also apply across multiple related col-

umns. For example, columns for the earliest and latest

ages of a fossil occurrence may have different data for-

mats, or there could be a discrepancy between the named

chronological interval for an occurrence in one column

and its numerical age in a separate column. Inconsisten-

cies may not inherently represent errors in data values,

but their inclusion in a dataset can lead to a variety of

downstream issues during data analysis, including skew-

ing of summarized values, or the incorrect parsing of data

by software. These issues can have serious knock-on

effects for the interpretation of results, so it is essential

that they are rectified prior to further data analysis. Given

the variety of ways that inconsistencies can arise in a

dataset, identifying them is challenging and can require

high familiarity with the dataset. Exploratory data analysis

should therefore be performed iteratively (see Rule 4) to

minimize their risk of inclusion.

When searching for inconsistencies in your data, it is

essential to first set definitions and standards for the data,

which may be different from those associated with the

original format of the dataset. This involves ensuring that

you have made clear and consistent decisions on value

formats, structures, and classes (e.g. are dates listed as

DD-MM-YYYY or MM-DD-YYYY or YYYY-MM-DD?),

variable definitions (e.g. the column ‘min_ma’ refers to

the minimum possible numerical age of the fossil occur-

rence in millions of years before present in Box 1), and

the necessary precision of your values (e.g. all measure-

ments in a column will be in centimetres rather than

BOX 6. Identify & handle outliers

Happy that the dataset contains the information needed,

Robin sets out to identify potential outliers that might

affect the specific variables that relate to their research

question. To do this, Robin first plots a map of where

crocodiles have been found across the globe to see if any

fall in places that we would not expect. They find several

occurrences that appear within Antarctica, which is outside

the expected climate tolerances of the group. By checking

these occurrences against the associated references, it turns

out that the collections associated with these anomalous

occurrences appear to be legitimate, but the occurrences

themselves are only listed as ‘Crocodylia indet.’ Robin

could consider removing these occurrences due to this

lack of certainty, but they would have to be consistent in

their approach across the data, and make sure that the

procedure is documented so that future researchers can

follow their approach (see Rule 3).
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millimetres). When making decisions regarding the for-

matting of a column, it is always advisable to make edits

in a copy of that column to retain the original informa-

tion (see Rules 2 and 3). Similarly, adding new columns

and comments that contextualize your decisions or con-

cerns about a column’s accuracy can help avoid the pit-

falls of manual workflows (see Rule 3) and aid future

users of your data.

Many inconsistencies will become apparent as you

familiarize yourself with the spread of data within a parti-

cular column (see Rule 4). When using R, the ‘table()’

function can highlight the frequency of categorical values

within a column, which can quickly reveal inconsistent

data. Additionally, systematically checking within and

between columns for formatting and spelling discrepan-

cies will flag data values which appear problematic. Some

inconsistencies may relate to facets of your data that you

are less familiar with. This could result in incorrectly

identifying values as inconsistencies which are actually

separate data points (e.g. close taxonomic spellings, which

represent different taxonomic units rather than spelling

mistakes. For instance, Varanops is a genus of early Per-

mian carnivorous synapsid, whereas Varanopus is an ich-

nogenus of tetrapod footprints also from the Permian),

or missing inconsistencies due to a lack of knowledge

(e.g. two geological formation names that have now been

united under one name). In these cases, we recommend

flagging potential issues and obtaining assistance from the

literature or other researchers who have expertise in that

particular area, rather than making decisions which may

result in inaccurate data.

Because inconsistencies are inherently related to the

values of the data that you are working on, the ultimate

resource for resolving issues is the literature for the corre-

sponding geographic region, taxonomic group or time per-

iod of study. Additionally, there are a variety of packages

in R that can help identify potential inconsistencies in your

dataset. The fossilbrush package (Flannery-Sutherland

et al. 2022b) aims to assist with chronostratigraphic and

taxonomic harmonization within a dataset. Similarly, the

‘tax_check()’ function of the palaeoverse package (Jones

et al. 2023) can help to check for and tally potential spel-

ling variations of the same taxon. The previously men-

tioned CoordinateCleaner package (Zizka et al. 2019) is

also widely used to automatically and systematically flag

common spatial and temporal errors in biological and

palaeobiological collection datasets in a way that is sys-

tematic, transparent and easily built into personal work-

flows. However, packages such as these automatically flag

records based on predetermined mathematical rules and so

are blind to the context of the data that they are assessing.

Consequently, such approaches should be used as a com-

plement to, rather than a replacement for, decision making

by the researcher (Box 7).

RULE 8: IDENTIFY & HANDLE
DUPLICATES

Duplicate appearances of data entries are also a common

issue with occurrence datasets. The identification of

duplicate fossil occurrences is an essential step in data

cleaning, as neglecting them can directly impact the accu-

racy of analyses in a non-random way; by increasing the

signal of repeated data points in the dataset (see Rules 6

and 7). There are several ways in which the same occur-

rence might be recorded in a dataset multiple times. The

first is identical duplicates, where the exact same record

appears twice or more within a dataset. This is unlikely,

as occurrences within large databases are often assigned

consecutive unique identifiers and by definition cannot

appear twice. However, there are several circumstances

where this can occur. For example, when two previously

taxonomically unique occurrences are synonymized under

the same taxonomic name, when merging occurrences

sourced from different databases (e.g. the same fossil spe-

cimen could be independently entered into both GBIF

and the PBDB), or from user error when manually

manipulating a dataset (although this should be minimal

if following Rules 2 and 3). A more common form of

data duplication is the entry of the same fossil or collec-

tion of fossils as two separate occurrences or collections

by different contributors to the database in question.

The first step for resolving duplicate occurrences in your

dataset is choosing the criteria for identifying duplicates.

Identical duplicates should be inherently easy to spot, as

they will consist of exactly the same values across all vari-

ables (after inconsistencies have been addressed). Dupli-

cate occurrences arising from multiple entries of the same

BOX 7. Identify & handle inconsistencies

It’s then time for Robin to do a thorough check for

inconsistencies in the dataset. They check whether the

class types of the fields in the dataset make sense (e.g.

the ‘max_ma’ and ‘min_ma’ variables are listed as

‘numeric’), and make sure that there aren’t inconsisten-

cies between columns in the dataset (e.g. making sure

that occurrences with the same value in the ‘ear-

ly_interval’ column all have the same value for

‘max_ma’). Robin then uses several automatic check

functions in different R packages to flag any taxonomic

or formation names that might have several different

spellings. They quickly find that there are several

formations which have suspiciously similar names, one

obvious pair being ‘San Sebasti�an’ and ‘San Sebastian’.

After checking the literature to make sure that these are

indeed the same formation, Robin corrects the spelling

to ensure consistency across the dataset.
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fossil are more challenging, as user variation during data

entry will mean that not all variables are likely to be iden-

tical. When this is the case, one potential way to identify

duplicates is to use columns in the dataset related to the

reference (e.g. original descriptive publication) from which

the occurrence was acquired; though consideration of

what constitutes a duplicate should be established for your

specific project (e.g. if we are interested in the total num-

ber of localities, multiple references may refer to the same

locality and therefore could be defined as duplicates). Mul-

tiple occurrences of the same taxon from the same refer-

ence might indicate that data duplication has taken place;

checking the original reference will help resolve this. Other

columns that are likely to have obvious duplicate values

include those that tie a data record to a particular geo-

graphic or temporal position (e.g. two records with

similar/identical geographical coordinates) (Pires

et al. 2015; Zizka et al. 2020; Bonnet-Lebrun et al. 2023).

Once the criteria for removing duplicates are estab-

lished, only one occurrence record should be retained in

the processed dataset if multiple share the same taxonomy,

stratigraphic position, geological age, and coordinates. It is

ultimately the researcher’s decision whether to exclude

potential duplicates from the dataset, and the reasons for

doing so should be documented (see Rules 3 and 9). How-

ever, accidental removal of non-duplicate data can also

bias the results of a study, and so it is advisable to be con-

servative when removing entire occurrence entries. Data

duplicates can be more difficult to identify if inconsisten-

cies (see Rule 7) are present in the dataset, such as if the

same taxon has an entry for two different ages or geologi-

cal localities, where the age/location names have been

redefined or have different regional names. This means

that identification of inconsistencies and duplications (see

Rule 8) should often be performed iteratively.

Identification and removal of duplicates can be done

manually, but this approach has a high time–cost with

large datasets, particularly when identifying them can be

challenging in the first place. Alternatively, different soft-

ware packages can help streamline this process. Duplicates

can be removed using Excel by filtering the different col-

umns of your dataset, though this can be too time inten-

sive. In Python, this can be achieved using Pandas

(McKinney 2011), a library developed specifically for data

manipulation. Scripting in R offers quick and effective

alternatives; unique() or distinct() from the dplyr package

(Wickham et al. 2023a) can be used to return a dataset

with any direct duplicates removed. More complex

approaches, such as CoordinateCleaner (Zizka et al. 2019)

and fossilbrush (Flannery-Sutherland et al. 2022b), can

flag spatial, temporal, and taxonomic errors in occurrence

data. As discussed in Rule 7 and above, thorough litera-

ture and repository searches, or external expertise on

variables/groups you are less familiar with, should also be

used in tandem with the above analytical approaches to

resolve data duplications (Box 8).

RULE 9: REPORT YOUR DATA &
CLEANING EFFORTS

After cleaning your data and ensuring that it is fit for

purpose, it’s crucial to report on the cleaning steps you

took and the overall state of your data. Reporting

includes detailing how you carried out the cleaning steps

(see Rules 5–8, using the workflow from Rule 3), why

these were taken, the impact cleaning had on dataset

composition (such as the pre- and post-cleaning occur-

rence counts; see Rule 4), and dataset summary statistics.

Reporting these steps enables reproducibility: without

knowing how the data were cleaned, it is impossible to

understand the dataset in its processed form or reproduce

the downstream analyses. This also increases transparency,

such that other researchers will understand how and why

the cleaning steps were performed, as well as the time

investment on pre-analysis steps that is not otherwise well

documented. Reporting on data cleaning also provides a

venue for furthering acknowledgement; we can take this

space to document other data sources and software (e.g.

R packages) that contributed to the dataset in question

before or during the cleaning process.

Reporting should involve carefully documenting at

minimum: (1) how the data were chosen to be collected

(see Rule 1); (2) the data exploration performed (see

Rule 4); (3) how outliers, inconsistencies, and duplicates

were identified, their counts, and how they were dealt

with (e.g. removed, corrected, resampled; see Rules 5–8);
and (4) the pre- and post-cleaning dataset summary sta-

tistics. The summary statistics should cover, for both the

original raw dataset and the final cleaned dataset:

BOX 8. Identify & handle duplicates

For the last step of data cleaning, Robin needs to remove

any duplicates that might have crept into the dataset, as

these could impact further analyses. Robin makes a new

dataset including only the fields ‘collection_no’ and

‘accepted_name’, and then retains only the unique rows.

By comparing the number of rows between this dataset

and the total dataset, they find that 24 occurrences were

absolute duplicates. Robin then double checks these,

and removes them from the original dataset. After

finishing this step, Robin now has a pretty good idea of

how this dataset looks. They therefore decide to go back

and re-run their initial summary statistics as well as

adding some additional tests, before going back and

further refining the dataset.
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the overall counts of occurrences, sampling units, or any

other variables of interest; if applicable to the data,

aspects like means and standard deviations or ranges of

variables of interest; the degree of uncertainty regarding

pertinent variables (e.g. how certain are the taxonomic

assignments or stratigraphic occurrences, and to what

granularity are these recorded?); the impact of any filter-

ing (i.e. n occurrences were excluded by cleaning step x);

and any imputation in the dataset. Reporting your data

cleaning should be clearly documented in the methods

section, in the supplementary material, or accompanying

the dataset (see Rule 3).

Dataset reporting should also cover any cleaning cases

specific to your data or difficulties in data processing that

would be of interest to future data users or relevant spe-

cialists. This might include removing any occurrences of

specific taxa due to a debate over taxonomic uncertainty

(e.g. taxa with cf., aff., ?), synonymizing, or higher group

assignment, or removing occurrences from specific geo-

graphical regions or localities due to uncertain age assign-

ment. For example, a study on global trilobite

evolutionary trends might choose to identify and exclude

entries in their occurrence dataset of families that recent

assignments place within the poorly defined (i.e. ‘waste-

basket’) order ‘Ptychopariida’ (by following a published

taxonomic list, such as Adrain 2011). A global study on

Cambrian palaeobiogeography might explain that they

chose to time-bin their dataset differently because the

Cambrian Stage 10 (Cohen et al. 2013) has an as-yet

undefined base. In both examples, these data cleaning

decisions require direct explanation because they are not

obvious to non-specialists (or future researchers) on the

taxonomic group or time period, and will have extensive

impacts on the analysis results, which might influence

how other researchers view or use the data or results in

the future.

Several resources exist to aid the reporting process.

When downloading raw occurrence data, such as from

the PBDB, you can often download a supplementary

reference list citing all the contributors to the data you

downloaded. These should then be incorporated into

publication reference lists (preferably) or supplemental

references (see Smith et al. 2024 for discussion). If you

gathered data from the primary literature, or used litera-

ture to verify potentially erroneous entries in your dataset

(e.g. Rules 7 or 8), then you should compile a list of

references manually or using bibliographic software (e.g.

Zotero). Similarly, you can download package version

citations in R or Python for those used during cleaning.

Additionally, pre-formatted reporting templates exist,

such as those by PRISMA (Page et al. 2021), which could

be included in the supplementary information of an arti-

cle (Box 9).

RULE 10: DEPOSIT YOUR DATA &
WORKFLOW

Once you have documented and reported how you have

followed Rules 1–8 (see Rule 9), it is critical that you

deposit all of your data and workflow files in a reliable

archival repository, preferably prior to review. This

enables transparency, data accessibility, and reusability as

well as research reproducibility (see Table 1) for the fore-

seeable future. Further, by uploading your workflow, you

allow others (and future you) to apply your cleaning and

filtering steps to their own data, reinforcing standard

practices and preventing duplicated effort. At the mini-

mum, your archived files should include your raw data

file(s) (see Rule 2) and your data processing documenta-

tion (see Rule 3). However, you should aim to archive as

much of your entire research workflow as possible (see

Rule 9). For example, such an archive would ideally

include the scripts that you wrote to perform cleaning

and filtering operations (see Rule 3) and/or analysis and

visualization of your cleaned data, including any figures

in the accompanying paper (see Rule 4). It should also

include modified versions of the data file created before

or after manual and/or automated cleaning and filtering

steps have been performed, and your reporting on how

the data was changed by cleaning (see Rule 9). Finally, in

addition to depositing these files (preferably in non-

proprietary formats, e.g. .csv or .txt), you should also

include a metadata file which describes the attributes of

your various files, including their source, purpose, and, in

the case of data files, column definitions (Baca 2016).

In the case of occurrence data, the standards set forth

and resources created by Darwin Core (https://dwc.tdwg.

org/) may be useful (see https://fairsharing.org/ for other

data and metadata standards). In addition to increasing

the accessibility and reusability of your data, accurate and

BOX 9. Report your data & cleaning efforts

Robin now has a cleaned dataset that they use to run some

analyses, and they find some results which are worthy of

publication. When Robin writes up their manuscript, they

make sure to report all the steps that they took to clean the

data in their ‘methods’ section and in the associated

supplementary materials, drawing attention to the

decisions that they made on particular occurrences

(e.g. what Robin decided to do with the ‘Crocodylia

indet.’ specimens from Antarctica). Robin makes sure

their code is clean, structured, and legible, and

sufficiently commented such that it can be followed by

someone who is less familiar with the approaches that

they took.

14 PALAEONTOLOGY , VOLUME 68

 14754983, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pala.70028 by U

niversity O
f Sao Paulo - B

razil, W
iley O

nline L
ibrary on [14/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://dwc.tdwg.org/
https://dwc.tdwg.org/
https://fairsharing.org/


descriptive metadata is also vital for improving the disco-

verability of your data (L€offler et al. 2021).

There are different types of repositories for different

purposes. The PBDB and Neotoma serve as ideal reposi-

tories for individual occurrence data, and we strongly

encourage you to input new occurrence and taxonomic

information in these repositories or other appropriate

repositories. Nevertheless, these repositories are not

intended for storing your individual project materials

such as raw data files and scripts. Further, while the

ever-growing and dynamic nature of these databases via

community crowdsourcing is a clear benefit to our field,

this is also the same reason they are inappropriate for

storing static versions of your raw data; they may be edi-

ted by other users at some point in the future (see

Rule 2). Therefore, you’ll need to identify a separate

repository for your data archive. However, navigating the

data repository landscape can be challenging. For exam-

ple, as of February 2025, the Registry of Research Data

Repositories (https://www.re3data.org/; Pampel et al. 2013)

lists over 2850 open repositories available for archiving

data, with over 85 of them covering ‘Geology and

Palaeontology’. Commonly used general repositories for

occurrence data and associated files include Dryad,

Zenodo, FigShare, the Open Science Framework (OSF),

and Pangaea (Felden et al. 2023). Institutions (e.g. Yale

University, University of Vienna) and national bodies

(e.g. UK National Geoscience Data Centre) may also offer

their own in-house data archival services. When choosing

between repository options, you should consider several

archival aspects, including longevity, licensing, accessibil-

ity, discoverability, citability, version control, cost, and

capacity.

First, you should confirm that your chosen repository

will be able to store your files for a long time (i.e. dec-

ades, at minimum). This information is often listed as

‘longevity’, ‘persistence’, or ‘retention’ within a reposi-

tory’s policies. Most repositories aim to be sustainable

and last indefinitely; however, uncertainties around fund-

ing, future costs, and technological developments mean

this may not hold true. Many repositories will be clear

about how much funding they currently have (usually in

a number of years; e.g. OSF currently states it has

50 years of funding for hosting data), with the potential

for further funding in the future. If a repository does not

list a longevity of decades or guarantee permanent host-

ing, it should probably be avoided (see Lin et al. 2020 for

further discussion).

Next, your repository should either be clear about what

copyright license your files are shared under or provide

you with a selection of copyright licenses to choose from.

For data, the licenses developed by the Creative Com-

mons should be adequate, covering public domain, attri-

bution, and non-commercial license types. In general,

datasets containing only new data are usually published

under the CC0 license (‘No Rights Reserved’;

https://creativecommons.org/public-domain/cc0/), which

releases data into the public domain and makes the data

easy to reuse for other projects. For example, data in the

PBDB are released under a CC0 license (Uhen et al. 2023).

On the other hand, data from the Neotoma database

(Williams et al. 2018) are made available under a CC-BY

license, meaning that the data must be attributed accord-

ingly. For sharing code, there is a wider variety of licenses

to choose from, with some of the most popular licenses

including the MIT License, Apache License, and GNU

General Public License. If you find yourself having a hard

time choosing between licenses, you can find handy

tools for choosing from Creative Commons (https://

creativecommons.org/choose/) and GitHub (https://

choosealicense.com/).

You should also ensure that your repository will make

it easy to find and cite your data archive (Wilkinson

et al. 2016). The most common currency of academic

scholarship is citation count, which is often used as one

of the determining factors for hiring, promotion, and

funding decisions in academia, for better or worse

(Ravenscroft et al. 2017; Desrochers et al. 2018; Smith

et al. 2024). For a long time, datasets, particularly those

of occurrence data, were not citable in the same way in

which we cite publications (Payne et al. 2012; Sil-

vello 2018). Many repositories, such as Dryad, FigShare,

and Zenodo, have introduced the automatic assignment

of permanent and unique identification numbers called

digital object identifiers (DOIs) to archived datasets

(Brown 2021). Theoretically, DOIs have brought data on

par with standard publications with regards to citability

(although note that other restrictions may remain such as

limits to the total number of references imposed by jour-

nals (Payne et al. 2012) and the lack of inclusion of data

citations in many common citation indices (Silvello 2018;

Smith et al. 2024)). Some repositories may not automati-

cally assign DOIs, but may have other ways to provide

unique identifiers. For example, GitHub (a common

repository for software and data files) does not assign

DOIs and is therefore often not a citable repository in

journal publications. However, it does allow for integra-

tion with Zenodo which will archive each ‘release’ of a

public GitHub repository and assign each archive a DOI.

This also ensures static versioning of the respective code

and data files. Similarly, OSF, which can optionally pro-

vide a DOI for a public repository, can be linked to many

other storage solutions such as Amazon S3, Dropbox, and

OneDrive which are not otherwise citable. In addition to

citability, it is also important that the repository provides

a way for other researchers to discover your data. For

example, Zenodo and FigShare provide simple search

interfaces to search for datasets archived with their

JONES ET AL . : TEN RULES FOR CLEANING OCCURRENCE DATA 15

 14754983, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pala.70028 by U

niversity O
f Sao Paulo - B

razil, W
iley O

nline L
ibrary on [14/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.re3data.org/
https://creativecommons.org/public-domain/cc0/
https://creativecommons.org/public-domain/cc0/
https://creativecommons.org/public-domain/cc0/
https://creativecommons.org/choose/
https://creativecommons.org/choose/
https://choosealicense.com/
https://choosealicense.com/


respective services. Note that Google Scholar historically

has explicitly not indexed datasets, but tools such as Goo-

gle Dataset Search and Science Explorer

(https://scixplorer.org/) support finding of archived data-

sets across the web.

Finally, hosting files costs money, and therefore most

repositories have limits to the amount of storage that they

provide to individual users or for individual repositories.

For example, at the time of writing, free FigShare

accounts can only upload up to a total of 20 GB for free,

whereas Zenodo and OSF limit each free public reposi-

tory to 50 GB (with no account limits). Dryad similarly

offers a storage limit of 50 GB per repository but at a

base cost of $150 USD, though this cost can be covered

by partnerships with journals or fee waivers. Most reposi-

tories will have the option to increase these quotas for a

cost. For example, Dryad charges $50 USD for every

10 GB of storage above the base 50 GB, whereas FigShare

offers a paid premium service that enables users to

archive larger files and repositories with pricing based on

the amount of storage required. Fortunately, as men-

tioned previously, occurrence datasets tend to be rela-

tively small (<1 GB), so these free storage quotas should

be sufficient for most occurrence data repositories

(Box 10).

CONCLUSION

Large fossil occurrence datasets have revolutionized the

research questions that can be asked of the fossil record.

However, a variety of decisions and processes must be

carried out prior to conducting analyses that impact these

data and subsequent conclusions, including how we set

up projects (Rules 1–3), explore and clean data (Rules

4–8), and report our work (Rules 9–10). These steps can

be further complicated by the specificities of palaeo-

biological data, particularly those collected over long time

frames where collecting and reporting practices or

broader geopolitical shifts may impact the quality and

consistency of data being reported. Consequently, despite

data cleaning aiming to be an objective process, it is ulti-

mately the product of researchers who will make deci-

sions based on their professional expertise. In this article,

we provide general guidelines to serve as a framework to

follow for those working with and cleaning fossil occur-

rence data. Some of these guidelines may or may not be

relevant for individual projects, and they may not always

be easy to implement. However, we posit that each rule

that can be followed will ultimately provide a clearer

understanding of the decisions made to process a dataset

prior to analysis. This is an essential step to improve the

reproducibility of research; a necessary goal in the face of

a broader reproducibility crisis within science (Fidler

et al. 2017). We hope that, in following these rules, we as

a community can produce datasets that not only benefit

our own work in the present, but can assist future

researchers for many years to come by providing clear

and consistent explanations for how we have carried out

our work.
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